Suppr超能文献

利用金/吡啶/碳纳米管杂化结构增强一氧化碳电还原

Enhancing CO Electroreduction with Au/Pyridine/Carbon Nanotubes Hybrid Structures.

作者信息

Ma Zhongqiao, Lian Cheng, Niu Dongfang, Shi Lei, Hu Shuozhen, Zhang Xinsheng, Liu Honglai

机构信息

State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.

出版信息

ChemSusChem. 2019 Apr 23;12(8):1724-1731. doi: 10.1002/cssc.201802940. Epub 2019 Apr 1.

Abstract

Selective electrochemical reduction of CO by using renewable electricity has received considerable attention because of the potential to convert a harmful greenhouse gas into useful chemicals. A high-performance electrocatalyst for CO reduction is constructed based on metal nanoparticles/organic molecule hybrid materials. On the nanoscale, Au nanoparticles are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for CO, and enhanced stability. On the molecular level, the catalytic performance is further enhanced by introducing axial pyridine groups to the surface of the carbon nanotubes. The resulting hybrid catalyst exhibits around 93 % faradaic efficiency for CO production over a wide potential range (-0.58 to -0.98 V), a high mass activity of 251 A g at -0.98 V in aqueous solution at near-neutral pH, and strong stability with continuous electrolysis for 10 h at -0.58 V. DFT calculations indicate that the synergistic effects of Au and axial pyridine could dramatically stabilize the key intermediate (*COOH) formed in the rate-limiting step of CO reduction, which effectively lowers the overpotential.

摘要

利用可再生电力对CO进行选择性电化学还原因其有望将有害温室气体转化为有用化学品而备受关注。基于金属纳米颗粒/有机分子杂化材料构建了一种用于CO还原的高性能电催化剂。在纳米尺度上,金纳米颗粒均匀地锚定在碳纳米管上,从而大幅提高电流密度、改善对CO的选择性并增强稳定性。在分子水平上,通过在碳纳米管表面引入轴向吡啶基团进一步提高了催化性能。所得的杂化催化剂在较宽的电位范围(-0.58至-0.98 V)内对CO生成表现出约93%的法拉第效率,在近中性pH的水溶液中于-0.98 V时具有251 A g的高质量活性,并且在-0.58 V下连续电解10 h具有很强的稳定性。密度泛函理论计算表明,Au和轴向吡啶的协同效应可显著稳定CO还原限速步骤中形成的关键中间体(*COOH),从而有效降低过电位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验