Suppr超能文献

内质网伴侣蛋白在蛋白质折叠和质量控制中的作用。

The Role of Endoplasmic Reticulum Chaperones in Protein Folding and Quality Control.

机构信息

Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA.

Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA, USA.

出版信息

Prog Mol Subcell Biol. 2021;59:27-50. doi: 10.1007/978-3-030-67696-4_3.

Abstract

Molecular chaperones assist the folding of nascent chains in the cell. Chaperones also aid in quality control decisions as persistent chaperone binding can help to sort terminal misfolded proteins for degradation. There are two major molecular chaperone families in the endoplasmic reticulum (ER) that assist proteins in reaching their native structure and evaluating the fidelity of the maturation process. The ER Hsp70 chaperone, BiP, supports adenine nucleotide-regulated binding to non-native proteins that possess exposed hydrophobic regions. In contrast, the carbohydrate-dependent chaperone system involving the membrane protein calnexin and its soluble paralogue calreticulin recognize a specific glycoform of an exposed hydrophilic protein modification for which the composition is controlled by a series of glycosidases and transferases. Here, we compare and contrast the properties, mechanisms of action and functions of these different chaperones systems that work in parallel, as well as together, to assist a large variety of substrates that traverse the eukaryotic secretory pathway.

摘要

分子伴侣协助新生链在细胞中的折叠。伴侣蛋白还辅助质量控制决策,因为持续的伴侣蛋白结合有助于对末端错误折叠的蛋白质进行分类,以进行降解。内质网 (ER) 中有两种主要的分子伴侣家族,它们协助蛋白质达到其天然结构,并评估成熟过程的保真度。ER Hsp70 伴侣蛋白 BiP 支持与具有暴露的疏水区的非天然蛋白结合,该结合受腺嘌呤核苷酸调节。相比之下,涉及膜蛋白 calnexin 和其可溶性同源物 calreticulin 的碳水化合物依赖性伴侣蛋白系统,可识别暴露的亲水蛋白修饰的特定糖型,其组成由一系列糖苷酶和转移酶控制。在这里,我们比较和对比了这些不同伴侣蛋白系统的特性、作用机制和功能,这些系统平行且共同作用,以协助穿过真核分泌途径的大量不同的底物。

相似文献

1
The Role of Endoplasmic Reticulum Chaperones in Protein Folding and Quality Control.
Prog Mol Subcell Biol. 2021;59:27-50. doi: 10.1007/978-3-030-67696-4_3.
2
Involvement of endoplasmic reticulum chaperones in the folding of hepatitis C virus glycoproteins.
J Virol. 1998 May;72(5):3851-8. doi: 10.1128/JVI.72.5.3851-3858.1998.
3
Protein folding and quality control in the endoplasmic reticulum.
Curr Opin Cell Biol. 2004 Aug;16(4):343-9. doi: 10.1016/j.ceb.2004.06.012.
4
Protein quality control in the ER: the recognition of misfolded proteins.
Semin Cell Dev Biol. 2010 Jul;21(5):500-11. doi: 10.1016/j.semcdb.2010.03.006. Epub 2010 Mar 25.
6
Calnexin cycle - structural features of the ER chaperone system.
FEBS J. 2020 Oct;287(20):4322-4340. doi: 10.1111/febs.15330. Epub 2020 Apr 27.
7
N-Glycan-based ER Molecular Chaperone and Protein Quality Control System: The Calnexin Binding Cycle.
Traffic. 2016 Apr;17(4):308-26. doi: 10.1111/tra.12358. Epub 2016 Jan 10.
8
N-glycosylation mediated folding and quality control in serine proteases of the hepsin family.
FEBS J. 2023 Aug;290(16):3963-3965. doi: 10.1111/febs.16779. Epub 2023 Apr 4.
10
Role of calnexin in the glycan-independent quality control of proteolipid protein.
EMBO J. 2003 Jun 16;22(12):2948-58. doi: 10.1093/emboj/cdg300.

引用本文的文献

4
Endothelial Unfolded Protein Response-Mediated Cytoskeletal Effects.
Cell Biochem Funct. 2024 Dec;42(8):e70007. doi: 10.1002/cbf.70007.
5
Proteostasis and Its Role in Disease Development.
Cell Biochem Biophys. 2025 Jun;83(2):1725-1741. doi: 10.1007/s12013-024-01581-6. Epub 2024 Oct 18.
7
N-Glycosylation Deficiency in Transgene α7 nAChR and RIC3 Expressing CHO Cells Without NACHO.
J Membr Biol. 2024 Aug;257(3-4):245-256. doi: 10.1007/s00232-024-00317-0. Epub 2024 Jul 5.
9
The role of molecular chaperone CCT/TRiC in translation elongation: A literature review.
Heliyon. 2024 Apr 1;10(7):e29029. doi: 10.1016/j.heliyon.2024.e29029. eCollection 2024 Apr 15.

本文引用的文献

1
Mechanisms, regulation and functions of the unfolded protein response.
Nat Rev Mol Cell Biol. 2020 Aug;21(8):421-438. doi: 10.1038/s41580-020-0250-z. Epub 2020 May 26.
2
Recent advances in understanding catalysis of protein folding by molecular chaperones.
FEBS Lett. 2020 Sep;594(17):2770-2781. doi: 10.1002/1873-3468.13844. Epub 2020 Jun 12.
3
ERp29 as a regulator of Insulin biosynthesis.
PLoS One. 2020 May 20;15(5):e0233502. doi: 10.1371/journal.pone.0233502. eCollection 2020.
4
Calnexin cycle - structural features of the ER chaperone system.
FEBS J. 2020 Oct;287(20):4322-4340. doi: 10.1111/febs.15330. Epub 2020 Apr 27.
5
Proper secretion of the serpin antithrombin relies strictly on thiol-dependent quality control.
J Biol Chem. 2019 Dec 13;294(50):18992-19011. doi: 10.1074/jbc.RA119.010450. Epub 2019 Oct 29.
6
An oligomeric state-dependent switch in the ER enzyme FICD regulates AMPylation and deAMPylation of BiP.
EMBO J. 2019 Oct 4;38(21):e102177. doi: 10.15252/embj.2019102177. Epub 2019 Sep 18.
7
Asparagine-linked glycosylation is not directly coupled to protein translocation across the endoplasmic reticulum in .
Mol Biol Cell. 2019 Oct 1;30(21):2626-2638. doi: 10.1091/mbc.E19-06-0330. Epub 2019 Aug 21.
8
Quantitative glycoproteomics reveals new classes of STT3A- and STT3B-dependent N-glycosylation sites.
J Cell Biol. 2019 Aug 5;218(8):2782-2796. doi: 10.1083/jcb.201904004. Epub 2019 Jul 11.
9
Protein Quality Control in the Endoplasmic Reticulum.
Protein J. 2019 Jun;38(3):317-329. doi: 10.1007/s10930-019-09831-w.
10
The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends.
J Biol Chem. 2019 Feb 8;294(6):2098-2108. doi: 10.1074/jbc.REV118.002804. Epub 2018 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验