Suppr超能文献

内质网中的蛋白质质量控制。

Protein Quality Control in the Endoplasmic Reticulum.

机构信息

Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA.

Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA.

出版信息

Protein J. 2019 Jun;38(3):317-329. doi: 10.1007/s10930-019-09831-w.

Abstract

The site of protein folding and maturation for the majority of proteins that are secreted, localized to the plasma membrane or targeted to endomembrane compartments is the endoplasmic reticulum (ER). It is essential that proteins targeted to the ER are properly folded in order to carry out their function, as well as maintain protein homeostasis, as accumulation of misfolded proteins could lead to the formation of cytotoxic aggregates. Because protein folding is an error-prone process, the ER contains protein quality control networks that act to optimize proper folding and trafficking of client proteins. If a protein is unable to reach its native state, it is targeted for ER retention and subsequent degradation. The protein quality control networks of the ER that oversee this evaluation or interrogation process that decides the fate of maturing nascent chains is comprised of three general types of families: the classical chaperones, the carbohydrate-dependent system, and the thiol-dependent system. The cooperative action of these families promotes protein quality control and protein homeostasis in the ER. This review will describe the families of the ER protein quality control network and discuss the functions of individual members.

摘要

大多数分泌型、定位于质膜或靶向内质网隔室的蛋白质的折叠和成熟位点是内质网(ER)。靶向内质网的蛋白质必须正确折叠才能发挥其功能,并维持蛋白质的内稳态,因为错误折叠的蛋白质积累可能导致细胞毒性聚集物的形成。由于蛋白质折叠是一个易错的过程,内质网包含蛋白质质量控制网络,这些网络的作用是优化客户蛋白质的正确折叠和运输。如果蛋白质无法达到其天然状态,它将被靶向内质网滞留并随后降解。内质网的蛋白质质量控制网络监督决定成熟新生链命运的评估或询问过程,该网络由三种一般类型的家族组成:经典伴侣蛋白、碳水化合物依赖系统和硫醇依赖系统。这些家族的协同作用促进了内质网中的蛋白质质量控制和蛋白质内稳态。这篇综述将描述内质网蛋白质质量控制网络的家族,并讨论各个成员的功能。

相似文献

1
Protein Quality Control in the Endoplasmic Reticulum.
Protein J. 2019 Jun;38(3):317-329. doi: 10.1007/s10930-019-09831-w.
2
Folded or Degraded in Endoplasmic Reticulum.
Adv Exp Med Biol. 2020;1248:265-294. doi: 10.1007/978-981-15-3266-5_12.
3
The Role of Endoplasmic Reticulum Chaperones in Protein Folding and Quality Control.
Prog Mol Subcell Biol. 2021;59:27-50. doi: 10.1007/978-3-030-67696-4_3.
4
Protein Quality Control in the Endoplasmic Reticulum of Plants.
Annu Rev Plant Biol. 2018 Apr 29;69:147-172. doi: 10.1146/annurev-arplant-042817-040331. Epub 2018 Mar 23.
5
Redox-dependent protein quality control in the endoplasmic reticulum: folding to degradation.
Antioxid Redox Signal. 2012 May 15;16(10):1119-28. doi: 10.1089/ars.2011.4495. Epub 2012 Feb 23.
6
Chaperone-mediated reflux of secretory proteins to the cytosol during endoplasmic reticulum stress.
Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11291-11298. doi: 10.1073/pnas.1904516116. Epub 2019 May 17.
8
Protein folding in the endoplasmic reticulum.
Cold Spring Harb Perspect Biol. 2013 May 1;5(5):a013201. doi: 10.1101/cshperspect.a013201.
9
The unfolded protein response: a stress signaling pathway critical for health and disease.
Neurology. 2006 Jan 24;66(2 Suppl 1):S102-9. doi: 10.1212/01.wnl.0000192306.98198.ec.
10
Oxidoreductases in Glycoprotein Glycosylation, Folding, and ERAD.
Cells. 2020 Sep 22;9(9):2138. doi: 10.3390/cells9092138.

引用本文的文献

3
Endoplasmic Reticulum Stress in Cancer.
MedComm (2020). 2025 Jun 19;6(7):e70263. doi: 10.1002/mco2.70263. eCollection 2025 Jul.
4
Bi-allelic UGGT1 variants cause a congenital disorder of glycosylation.
Am J Hum Genet. 2025 May 1;112(5):1139-1157. doi: 10.1016/j.ajhg.2025.03.018. Epub 2025 Apr 22.
5
Inflammaging: Expansion of Molecular Phenotype and Role in Age-Associated Female Infertility.
Biomedicines. 2024 Sep 2;12(9):1987. doi: 10.3390/biomedicines12091987.
7
Insights into the interaction between UGGT, the gatekeeper of folding in the ER, and its partner, the selenoprotein SEP15.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2315009121. doi: 10.1073/pnas.2315009121. Epub 2024 Aug 12.
8
Loss of Fic causes progressive neurodegeneration in a Drosophila model of hereditary spastic paraplegia.
Biochim Biophys Acta Mol Basis Dis. 2024 Oct;1870(7):167348. doi: 10.1016/j.bbadis.2024.167348. Epub 2024 Jul 8.
9
Dipeptidyl peptidases and E3 ligases of N-degron pathways cooperate to regulate protein stability.
J Cell Biol. 2024 Aug 5;223(8). doi: 10.1083/jcb.202311035. Epub 2024 Jun 14.
10
The interaction of GRP78 and Zika virus E and NS1 proteins occurs in a chaperone-client manner.
Sci Rep. 2024 May 6;14(1):10407. doi: 10.1038/s41598-024-61195-z.

本文引用的文献

1
Function, evolution, and structure of J-domain proteins.
Cell Stress Chaperones. 2019 Jan;24(1):7-15. doi: 10.1007/s12192-018-0948-4. Epub 2018 Nov 26.
2
Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates.
Commun Biol. 2018 Oct 18;1:172. doi: 10.1038/s42003-018-0174-8. eCollection 2018.
3
EDEM1's mannosidase-like domain binds ERAD client proteins in a redox-sensitive manner and possesses catalytic activity.
J Biol Chem. 2018 Sep 7;293(36):13932-13945. doi: 10.1074/jbc.RA118.004183. Epub 2018 Jul 18.
5
Role of Selenof as a Gatekeeper of Secreted Disulfide-Rich Glycoproteins.
Cell Rep. 2018 May 1;23(5):1387-1398. doi: 10.1016/j.celrep.2018.04.009.
6
Redundant and Antagonistic Roles of XTP3B and OS9 in Decoding Glycan and Non-glycan Degrons in ER-Associated Degradation.
Mol Cell. 2018 May 3;70(3):516-530.e6. doi: 10.1016/j.molcel.2018.03.026. Epub 2018 Apr 26.
7
A J-Protein Co-chaperone Recruits BiP to Monomerize IRE1 and Repress the Unfolded Protein Response.
Cell. 2017 Dec 14;171(7):1625-1637.e13. doi: 10.1016/j.cell.2017.10.040. Epub 2017 Nov 30.
9
Visualisation of a flexible modular structure of the ER folding-sensor enzyme UGGT.
Sci Rep. 2017 Sep 22;7(1):12142. doi: 10.1038/s41598-017-12283-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验