The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Macromol Rapid Commun. 2021 Jul;42(14):e2100147. doi: 10.1002/marc.202100147. Epub 2021 May 29.
Hydrogels are commonly doped with stiff nanoscale fillers to endow them with the strength and stiffness needed for engineering applications. Although structure-property relations for many polymer matrix nanocomposites are well established, modeling the new generation of hydrogel nanocomposites requires the study of processing-structure-property relationships because subtle differences in chemical kinetics during their synthesis can cause nearly identical hydrogels to have dramatically different mechanical properties. The authors therefore assembled a framework to relate synthesis conditions (including hydrogel and nanofiller mechanical properties and light absorbance) to gelation kinetics and mechanical properties. They validated the model against experiments on a graphene oxide (GO) doped oligo (ethylene glycol) diacrylate (OEGDA), a system in which, in apparent violation of laws from continuum mechanics, doping can reduce rather than increase the stiffness of the resulting hydrogel nanocomposites. Both model and experiment showed a key role light absorbance-dominated gelation kinetics in determining nanocomposite mechanical properties in conjunction with nanofiller reinforcement, with the nanofiller's attenuation of chemical kinetics sometimes outweighing stiffening effects to explain the observed, anomalous loss of stiffness. By bridging the chemical kinetics and mechanics of nanocomposite hydrogels, the authors' modeling framework shows promise for broad applicability to design of hydrogel nanocomposites.
水凝胶通常掺杂有刚性纳米级填充物,以赋予它们在工程应用中所需的强度和刚性。尽管许多聚合物基体纳米复合材料的结构-性能关系已经得到很好的确立,但新一代水凝胶纳米复合材料的建模需要研究加工-结构-性能关系,因为它们合成过程中的化学动力学的细微差异可能导致几乎相同的水凝胶具有截然不同的机械性能。因此,作者构建了一个框架,将合成条件(包括水凝胶和纳米填料的机械性能和光吸收率)与凝胶化动力学和机械性能联系起来。他们通过实验验证了模型,实验对象是掺杂氧化石墨烯(GO)的寡聚(乙二醇)二丙烯酸酯(OEGDA)体系,该体系明显违反了连续力学定律,掺杂会降低而不是提高所得水凝胶纳米复合材料的刚度。模型和实验都表明,光吸收主导的凝胶化动力学在决定纳米复合材料的机械性能方面与纳米填料的增强作用具有关键作用,纳米填料对化学动力学的衰减有时会超过增韧作用,从而解释了观察到的异常刚度损失。通过弥合纳米复合水凝胶的化学动力学和力学,作者的建模框架显示出在设计水凝胶纳米复合材料方面具有广泛的适用性。