Suppr超能文献

基于偏好的工具变量研究与整群随机激励实验的衔接:研究设计、不依从性和平均群组效应比。

Bridging preference-based instrumental variable studies and cluster-randomized encouragement experiments: Study design, noncompliance, and average cluster effect ratio.

机构信息

Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Graduate Group in Applied Mathematics and Computational Science, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Biometrics. 2022 Dec;78(4):1639-1650. doi: 10.1111/biom.13500. Epub 2021 Jun 8.

Abstract

Instrumental variable (IV) methods are widely used in medical research to draw causal conclusions when the treatment and outcome are confounded by unmeasured confounding variables. One important feature of such studies is that the IV is often applied at the cluster level, for example, hospitals' or physicians' preference for a certain treatment where each hospital or physician naturally defines a cluster. This paper proposes to embed such observational IV data into a cluster-randomized encouragement experiment using nonbipartite matching. Potential outcomes and causal assumptions underpinning the design are formalized and examined. Testing procedures for two commonly used estimands, Fisher's sharp null hypothesis and the pooled effect ratio (PER), are extended to the current setting. We then introduce a novel cluster-heterogeneous proportional treatment effect model and the relevant estimand: the average cluster effect ratio. This new estimand is advantageous over the structural parameter in a constant proportional treatment effect model in that it allows treatment heterogeneity, and is advantageous over the PER estimand in that it does not suffer from Simpson's paradox. We develop an asymptotically valid randomization-based testing procedure for this new estimand based on solving a mixed-integer quadratically constrained optimization problem. The proposed design and inferential methods are applied to a study of the effect of using transesophageal echocardiography during coronary artery bypass graft surgery on patients' 30-day mortality rate. R package ivdesign implements the proposed method.

摘要

工具变量(IV)方法广泛应用于医学研究中,当治疗和结果受到未测量的混杂变量影响时,可以通过这种方法得出因果关系的结论。此类研究的一个重要特点是,IV 通常应用于聚类水平,例如,医院或医生对某种治疗方法的偏好,每个医院或医生自然会定义一个聚类。本文提出使用非二分匹配将这种观察性 IV 数据嵌入到聚类随机激励实验中。设计的潜在结果和因果假设被形式化并进行了检验。将两种常用的估计量,Fisher 尖锐零假设和总效应比(PER)的检验程序扩展到当前的设置。然后,我们引入了一个新的聚类异质比例治疗效果模型和相关的估计量:平均聚类效果比。与恒定比例治疗效果模型中的结构参数相比,这个新的估计量具有优势,因为它允许治疗异质性,与 PER 估计量相比,它不受辛普森悖论的影响。我们基于求解混合整数二次约束优化问题,为这个新的估计量开发了一种渐近有效的基于随机化的检验程序。所提出的设计和推论方法应用于研究在冠状动脉旁路移植术中使用经食管超声心动图对患者 30 天死亡率的影响。R 包 ivdesign 实现了所提出的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验