Mao Lu
Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
Biostat Epidemiol. 2022;6(2):249-265. doi: 10.1080/24709360.2021.2024972. Epub 2022 Feb 27.
To analyze randomized trials with imperfect compliance, a standard approach is to estimate the local average treatment effect in the sub-population of compliers using randomization status as an instrumental variable. Though quantile analysis has been popular in general, the local (or complier) quantile treatment effect (cQTE) as a causal estimand has received insufficient attention. In this paper, we map out the details for the estimation, inference, and sensitivity analysis of the cQTE in a completely nonparametric setting. We propose to estimate the cQTE using nonparametric plug-in estimators of the cumulative distribution functions for the potential outcomes of the compliers. The cQTE estimator is shown to be asymptotically normal, with asymptotic variance estimated through kernel-smoothed density estimators. The procedure is easily extended to adjust for discrete covariates for gains in statistical efficiency. Moreover, by exploiting the stochastic monotonicity of the quantile functional, we develop sensitivity bounds for the cQTE when key assumptions such as exclusion restriction and instrument monotonicity are violated. Extensive simulations show that the proposed methods provide valid inference of the target local estimand and outperform standard intent-to-treat tests, especially under low compliance rates and/or heterogeneous treatment effects. A recent study on a government-funded health insurance program in India is analyzed as an illustration.
为了分析存在不完全依从性的随机试验,一种标准方法是将随机化状态作为工具变量,估计依从者亚群体中的局部平均治疗效果。尽管分位数分析总体上很流行,但作为因果估计量的局部(或依从者)分位数治疗效果(cQTE)却未得到足够关注。在本文中,我们详细阐述了在完全非参数设定下cQTE的估计、推断和敏感性分析。我们建议使用依从者潜在结果的累积分布函数的非参数代入估计量来估计cQTE。结果表明,cQTE估计量渐近正态,其渐近方差通过核平滑密度估计量来估计。该程序可轻松扩展以调整离散协变量,从而提高统计效率。此外,通过利用分位数函数的随机单调性,当诸如排除限制和工具单调性等关键假设被违反时,我们为cQTE开发了敏感性界限。大量模拟表明,所提出的方法能够对目标局部估计量进行有效推断,并且优于标准的意向性治疗检验,尤其是在低依从率和/或异质性治疗效果的情况下。作为例证,我们分析了最近一项关于印度政府资助的健康保险计划的研究。