Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, USA.
School of Earth, Environment & Society, McMaster University, Hamilton, ON, Canada.
J Biomech. 2021 Jun 23;123:110531. doi: 10.1016/j.jbiomech.2021.110531. Epub 2021 May 15.
Recent transmission electron microscopy images of transverse sections of human cortical bone showed that mineral lamellae (polycrystalline sheets of apatite crystals) form arcuate multi-radius patterns around collagen fibrils. The 3-6 nm thick mineral lamellae are arranged in stacks of 3-20 layers and curve around individual fibrils, few fibrils, and higher numbers of collagen fibrils. We evaluate the effect of these stacked mineral lamellae with various radius of curvature patterns on the elastic bending and torsional responses of bone at the sub-microscale using a finite element method. We find that the curved multi-radius stack patterns increased the bending and torsional stiffnesses by 7% and 23%, respectively, compared to when the stacks of mineral lamellae only encircle individual fibrils for the idealized geometric models considered. This study provides new insights into the structure-property relations for the bone ultrastructure.
最近的人类皮质骨横切面透射电子显微镜图像显示,矿物质层(磷灰石晶体的多晶片状)围绕胶原纤维形成弧形多半径模式。3-6nm 厚的矿物质层以 3-20 层的堆叠排列,并围绕单个纤维、少数纤维和更多数量的胶原纤维弯曲。我们使用有限元方法评估了在亚微观尺度上,具有不同曲率半径模式的这些堆叠矿物质层对骨的弹性弯曲和扭转响应的影响。我们发现,与仅围绕单个纤维的矿物质层堆叠相比,对于所考虑的理想化几何模型,弯曲的多半径堆叠模式分别使弯曲和扭转刚度增加了 7%和 23%。这项研究为骨超微结构的结构-性能关系提供了新的见解。