Department of Materials Science and Engineering, McMaster University, 1280 Main St W, ETB 403, Hamilton, ON, L8S 4L7, Canada.
School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada.
Calcif Tissue Int. 2018 Dec;103(6):606-616. doi: 10.1007/s00223-018-0454-9. Epub 2018 Jul 14.
The ultrastructure of bone has been widely debated, in part due to limitations in visualizing nanostructural features over relevant micrometer length scales. Here, we employ the high resolving power and compositional contrast of high-angle annular dark-field scanning transmission electron microscopy (HAADF STEM) to investigate new features in human bone with nanometer resolution over microscale areas. Using focused ion beam (FIB)-milled sections that span an area of 50 μm, we have shown how most of the mineral of cortical human osteonal bone occurs in the form of long, thin polycrystalline plates (mineral lamellae, MLs) which are either flat or curved to wrap closely around collagen fibrils. Close to the collagen fibril (< 20 nm), the radius of curvature matches that of the fibril diameter, while at greater distances, MLs form arcs with much larger radii of curvature. In addition, stacks of closely packed planar (uncurved) MLs occur between fibrils. The curving of mineral lamellae both around and between the fibrils would contribute to the strength of bone. At a larger scale, rosette-like clusters of fibrils are noted for the first time, arranged in quasi-circular arrays that define tube-like structures in alternating osteonal lamellae. At the boundary between adjacent osteonal lamellae, the orientation of fibrils and surrounding mineral lamellae changes abruptly, resembling the "orthogonal" patterns identified by others (Reznikov et al. in Acta Biomater 10:3815-3826, 2014). These features spanning nanometer to micrometer scale have implications for our understanding of bone structure and mechanical integrity.
骨的超微结构一直存在广泛争议,部分原因是在相关的微米长度尺度上观察纳米结构特征存在局限性。在这里,我们采用高角环形暗场扫描透射电子显微镜(HAADF-STEM)的高分辨率和成分对比,以纳米分辨率研究微尺度区域的人类骨的新特征。使用跨越 50μm 面积的聚焦离子束(FIB)铣削切片,我们展示了皮质骨骨单位的大部分矿物质如何以长而薄的多晶体板(矿物质薄片,MLs)的形式存在,这些板要么是平的,要么是弯曲的,以紧密包裹胶原纤维。在靠近胶原纤维(<20nm)的地方,曲率半径与纤维直径匹配,而在更远的距离处,MLs 形成具有更大曲率半径的弧形。此外,在纤维之间还存在紧密堆积的平面(未弯曲)MLs 层。矿物质薄片在纤维周围和之间的弯曲将有助于增强骨的强度。在更大的尺度上,首次注意到类玫瑰花结状的纤维簇,以准圆形排列方式排列,在交替的骨单位板片中定义管状结构。在相邻骨单位板片之间的边界处,纤维和周围矿物质薄片的取向突然发生变化,类似于其他人(Reznikov 等人在 Acta Biomater 10:3815-3826,2014 年)确定的“正交”模式。这些从纳米到微米尺度的特征对我们理解骨结构和机械完整性具有重要意义。