Schwarcz Henry P
School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada.
Semin Cell Dev Biol. 2015 Oct;46:44-50. doi: 10.1016/j.semcdb.2015.06.008. Epub 2015 Jul 9.
Mineral makes up more than half the volume of bone, but its spatial and structural relationship to collagen and other proteins is still a matter of debate. Due to the nanometer-size of bone crystals this matter can be resolved only with transmission electron microscope (TEM) images. Using sections cut with an ultramicrotome, previous investigators determined most mineral lies in the 40nm wide gap zone in collagen fibrils. Using less invasive sectioning methods (ion milling and focused ion beam [FIB]) reveals that most mineral is extrafibrillar, occurring in the form of mineral lamellae, polycrystalline plates 300nm or more long, packed around collagen fibrils in stacks of four or more lamellae <1nm apart. While Ca and P also occur in the gap zone, they do not appear to be in the form of well-crystallized apatite. This new model for bone ultrastructure resolves outstanding problems presented by the previous model.
矿物质占骨骼体积的一半以上,但其与胶原蛋白和其他蛋白质的空间及结构关系仍存在争议。由于骨晶体的纳米尺寸,这个问题只能通过透射电子显微镜(TEM)图像来解决。使用超薄切片机切割的切片,先前的研究人员确定大部分矿物质位于胶原纤维中40纳米宽的间隙区域。使用侵入性较小的切片方法(离子铣削和聚焦离子束[FIB])显示,大部分矿物质位于纤维外,以矿物质薄片的形式出现,这些多晶薄片长300纳米或更长,以四层或更多层间距小于1纳米的薄片堆叠形式围绕胶原纤维排列。虽然钙和磷也存在于间隙区域,但它们似乎不是结晶良好的磷灰石形式。这种新的骨超微结构模型解决了先前模型提出的突出问题。