Systems Pharmacology & Medicine, Bayer AG, Leverkusen, Germany.
Institute of Applied Microbiology, Aachen Biology and Biotechnology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany.
CPT Pharmacometrics Syst Pharmacol. 2021 Jul;10(7):782-793. doi: 10.1002/psp4.12646. Epub 2021 Jun 26.
Physiologically based pharmacokinetic (PBPK) models have been proposed as a tool for more accurate individual pharmacokinetic (PK) predictions and model-informed precision dosing, but their application in clinical practice is still rare. This study systematically assesses the benefit of using individual patient information to improve PK predictions. A PBPK model of caffeine was stepwise personalized by using individual data on (1) demography, (2) physiology, and (3) cytochrome P450 (CYP) 1A2 phenotype of 48 healthy volunteers participating in a single-dose clinical study. Model performance was benchmarked against a caffeine base model simulated with parameters of an average individual. In the first step, virtual twins were generated based on the study subjects' demography (height, weight, age, sex), which implicated the rescaling of average organ volumes and blood flows. The accuracy of PK simulations improved compared with the base model. The percentage of predictions within 0.8-fold to 1.25-fold of the observed values increased from 45.8% (base model) to 57.8% (Step 1). However, setting physiological parameters (liver blood flow determined by magnetic resonance imaging, glomerular filtration rate, hematocrit) to measured values in the second step did not further improve the simulation result (59.1% in the 1.25-fold range). In the third step, virtual twins matching individual demography, physiology, and CYP1A2 activity considerably improved the simulation results. The percentage of data within the 1.25-fold range was 66.15%. This case study shows that individual PK profiles can be predicted more accurately by considering individual attributes and that personalized PBPK models could be a valuable tool for model-informed precision dosing approaches in the future.
生理药代动力学(PBPK)模型被提议作为更准确的个体药代动力学(PK)预测和模型指导的精准给药的工具,但它们在临床实践中的应用仍然很少。本研究系统评估了利用个体患者信息来改善 PK 预测的益处。使用 48 名参与单次剂量临床研究的健康志愿者的个体数据(1)人口统计学、(2)生理学和(3)细胞色素 P450(CYP)1A2 表型,逐步对咖啡因的 PBPK 模型进行个体化。将使用个体参数模拟的咖啡因基础模型的模型性能作为基准进行比较。在第一步中,根据研究对象的人口统计学(身高、体重、年龄、性别)生成虚拟双胞胎,这意味着平均器官体积和血液流量的缩放。与基础模型相比,PK 模拟的准确性有所提高。预测值在观察值的 0.8 倍至 1.25 倍范围内的百分比从 45.8%(基础模型)增加到 57.8%(第 1 步)。然而,在第二步中将生理参数(磁共振成像确定的肝血流量、肾小球滤过率、血细胞比容)设置为实测值并没有进一步改善模拟结果(在 1.25 倍范围内为 59.1%)。在第三步中,匹配个体人口统计学、生理学和 CYP1A2 活性的虚拟双胞胎极大地改善了模拟结果。在 1.25 倍范围内的数据百分比为 66.15%。本案例研究表明,通过考虑个体属性,可以更准确地预测个体 PK 谱,并且个性化 PBPK 模型可能是未来模型指导的精准给药方法的有价值工具。