Suppr超能文献

基于全卷积网络的多输出模型,用于自动分割胸部危险器官。

Fully convolutional network-based multi-output model for automatic segmentation of organs at risk in thorax.

机构信息

Institute of Cancer and Medicine, Chinese Academy of Sciences, Hangzhou, China.

Department of Radiation Physics, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.

出版信息

Sci Prog. 2021 Apr-Jun;104(2):368504211020161. doi: 10.1177/00368504211020161.

Abstract

PURPOSE

To propose a multi-output fully convolutional network (MOFCN) to segment bilateral lung, heart and spinal cord in the planning thoracic computed tomography (CT) slices automatically and simultaneously.

METHODS

The MOFCN includes two components: one main backbone and three branches. The main backbone extracts the features about lung, heart and spinal cord. The extracted features are transferred to three branches which correspond to three organs respectively. The longest branch to segment spinal cord is nine layers, including input and output layers. The MOFCN was evaluated on 19,277 CT slices from 966 patients with cancer in the thorax. In these slices, the organs at risk (OARs) were delineated and validated by experienced radiation oncologists, and served as ground truth for training and evaluation. The data from 61 randomly chosen patients were used for training and validation. The remaining 905 patients' slices were used for testing. The metric used to evaluate the similarity between the auto-segmented organs and their ground truth was Dice. Besides, we compared the MOFCN with other published models. To assess the distinct output design and the impact of layer number and dilated convolution, we compared MOFCN with a multi-label learning model and its variants. By analyzing the not good performances, we suggested possible solutions.

RESULTS

MOFCN achieved Dice of 0.95±0.02 for lung, 0.91±0.03 for heart and 0.87±0.06 for spinal cord. Compared to other models, MOFCN could achieve a comparable accuracy with the least time cost.

CONCLUSION

The results demonstrated the MOFCN's effectiveness. It uses less parameters to delineate three OARs simultaneously and automatically, and thus shows a relatively low requirement for hardware and has potential for broad application.

摘要

目的

提出一种多输出全卷积网络(MOFCN),以自动、同时分割规划胸部 CT 切片中的双侧肺、心脏和脊髓。

方法

MOFCN 包括两个部分:一个主骨干和三个分支。主骨干提取关于肺、心脏和脊髓的特征。提取的特征被传输到三个分支,分别对应于三个器官。最长的用于分割脊髓的分支有九层,包括输入层和输出层。MOFCN 在 966 名胸部癌症患者的 19277 张 CT 切片上进行了评估。在这些切片中,风险器官(OARs)由有经验的放射肿瘤学家进行了描绘和验证,并作为训练和评估的基准。从 61 名随机选择的患者中获得的数据用于训练和验证。其余 905 名患者的切片用于测试。用于评估自动分割器官与其基准之间相似性的度量标准是 Dice。此外,我们将 MOFCN 与其他已发表的模型进行了比较。为了评估独特的输出设计以及层数量和扩张卷积的影响,我们将 MOFCN 与多标签学习模型及其变体进行了比较。通过分析性能不佳的情况,我们提出了可能的解决方案。

结果

MOFCN 实现了肺的 Dice 为 0.95±0.02,心脏为 0.91±0.03,脊髓为 0.87±0.06。与其他模型相比,MOFCN 可以以最少的时间成本实现相当的准确性。

结论

结果表明 MOFCN 的有效性。它使用较少的参数同时自动描绘三个 OAR,因此对硬件的要求相对较低,具有广泛应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a0/10454972/a3f333528830/10.1177_00368504211020161-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验