文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用深度扩张卷积神经网络在直肠癌计划 CT 中自动分割临床靶区和危及器官。

Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.

机构信息

National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Med Phys. 2017 Dec;44(12):6377-6389. doi: 10.1002/mp.12602. Epub 2017 Oct 28.


DOI:10.1002/mp.12602
PMID:28963779
Abstract

PURPOSE: Delineation of the clinical target volume (CTV) and organs at risk (OARs) is very important for radiotherapy but is time-consuming and prone to inter-observer variation. Here, we proposed a novel deep dilated convolutional neural network (DDCNN)-based method for fast and consistent auto-segmentation of these structures. METHODS: Our DDCNN method was an end-to-end architecture enabling fast training and testing. Specifically, it employed a novel multiple-scale convolutional architecture to extract multiple-scale context features in the early layers, which contain the original information on fine texture and boundaries and which are very useful for accurate auto-segmentation. In addition, it enlarged the receptive fields of dilated convolutions at the end of networks to capture complementary context features. Then, it replaced the fully connected layers with fully convolutional layers to achieve pixel-wise segmentation. We used data from 278 patients with rectal cancer for evaluation. The CTV and OARs were delineated and validated by senior radiation oncologists in the planning computed tomography (CT) images. A total of 218 patients chosen randomly were used for training, and the remaining 60 for validation. The Dice similarity coefficient (DSC) was used to measure segmentation accuracy. RESULTS: Performance was evaluated on segmentation of the CTV and OARs. In addition, the performance of DDCNN was compared with that of U-Net. The proposed DDCNN method outperformed the U-Net for all segmentations, and the average DSC value of DDCNN was 3.8% higher than that of U-Net. Mean DSC values of DDCNN were 87.7% for the CTV, 93.4% for the bladder, 92.1% for the left femoral head, 92.3% for the right femoral head, 65.3% for the intestine, and 61.8% for the colon. The test time was 45 s per patient for segmentation of all the CTV, bladder, left and right femoral heads, colon, and intestine. We also assessed our approaches and results with those in the literature: our system showed superior performance and faster speed. CONCLUSIONS: These data suggest that DDCNN can be used to segment the CTV and OARs accurately and efficiently. It was invariant to the body size, body shape, and age of the patients. DDCNN could improve the consistency of contouring and streamline radiotherapy workflows.

摘要

目的:勾画临床靶区(CTV)和危及器官(OAR)对于放疗非常重要,但耗时且容易出现观察者间的差异。在这里,我们提出了一种新的基于深度扩张卷积神经网络(DDCNN)的快速、一致的自动勾画这些结构的方法。

方法:我们的 DDCNN 方法是一种端到端的架构,能够实现快速的训练和测试。具体来说,它采用了一种新的多尺度卷积架构,在早期层中提取多尺度上下文特征,这些特征包含精细纹理和边界的原始信息,对于准确的自动勾画非常有用。此外,它在网络末端扩大了扩张卷积的感受野,以捕获互补的上下文特征。然后,它用全卷积层代替全连接层,实现像素级分割。我们使用了 278 例直肠癌患者的数据进行评估。CTV 和 OAR 由资深放射肿瘤学家在计划 CT 图像中勾画和验证。随机选择了 218 例患者用于训练,其余 60 例用于验证。采用 Dice 相似系数(DSC)衡量分割准确性。

结果:在 CTV 和 OAR 的分割性能上进行了评估。此外,还将 DDCNN 的性能与 U-Net 进行了比较。所提出的 DDCNN 方法在所有分割方面均优于 U-Net,DDCNN 的平均 DSC 值比 U-Net高 3.8%。DDCNN 的 CTV 平均 DSC 值为 87.7%,膀胱为 93.4%,左侧股骨头为 92.1%,右侧股骨头为 92.3%,肠为 65.3%,结肠为 61.8%。所有 CTV、膀胱、左右股骨头、结肠和肠的分割测试时间为每位患者 45 秒。我们还评估了我们的方法和结果与文献中的方法:我们的系统表现出更好的性能和更快的速度。

结论:这些数据表明,DDCNN 可用于准确、高效地分割 CTV 和 OAR。它不受患者体型、体型和年龄的影响。DDCNN 可以提高勾画的一致性,简化放疗工作流程。

相似文献

[1]
Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.

Med Phys. 2017-10-28

[2]
Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning.

Phys Med. 2018-5-19

[3]
Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.

Med Phys. 2018-9-19

[4]
Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.

Med Phys. 2017-2

[5]
Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation.

Med Phys. 2023-3

[6]
Clinical Target Volume Auto-Segmentation of Esophageal Cancer for Radiotherapy After Radical Surgery Based on Deep Learning.

Technol Cancer Res Treat. 2021

[7]
AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.

Med Phys. 2018-12-17

[8]
Three-dimensional deep neural network for automatic delineation of cervical cancer in planning computed tomography images.

J Appl Clin Med Phys. 2022-4

[9]
Delineation of clinical target volume and organs at risk in cervical cancer radiotherapy by deep learning networks.

Med Phys. 2023-10

[10]
RefineNet-based 2D and 3D automatic segmentations for clinical target volume and organs at risks for patients with cervical cancer in postoperative radiotherapy.

J Appl Clin Med Phys. 2022-7

引用本文的文献

[1]
CT-based auto-segmentation of multiple target volumes for all-in-one radiotherapy in rectal cancer patients.

Radiat Oncol. 2025-8-19

[2]
A deep learning-based computed tomography reading system for the diagnosis of lung cancer associated with cystic airspaces.

Sci Rep. 2025-7-2

[3]
Deep learning in nuclear medicine: from imaging to therapy.

Ann Nucl Med. 2025-5

[4]
Synthesizing Efficiency Tools in Radiotherapy to Increase Patient Flow: A Comprehensive Literature Review.

Clin Med Insights Oncol. 2024-12-13

[5]
Artificial intelligence contouring in radiotherapy for organs-at-risk and lymph node areas.

Radiat Oncol. 2024-11-21

[6]
Clinical evaluation of the convolutional neural network‑based automatic delineation tool in determining the clinical target volume and organs at risk in rectal cancer radiotherapy.

Oncol Lett. 2024-9-6

[7]
Automatic segmentation of esophageal cancer, metastatic lymph nodes and their adjacent structures in CTA images based on the UperNet Swin network.

Cancer Med. 2024-9

[8]
Deep learning for autosegmentation for radiotherapy treatment planning: State-of-the-art and novel perspectives.

Strahlenther Onkol. 2025-3

[9]
Towards automated organs at risk and target volumes contouring: Defining precision radiation therapy in the modern era.

J Natl Cancer Cent. 2022-10-11

[10]
An overview of artificial intelligence in medical physics and radiation oncology.

J Natl Cancer Cent. 2023-8-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索