Suppr超能文献

基于单值中智集加权向量相似性测度凸组合的多属性认知决策

Multi-attribute Cognitive Decision Making via Convex Combination of Weighted Vector Similarity Measures for Single-Valued Neutrosophic Sets.

作者信息

Borah Gourangajit, Dutta Palash

机构信息

Department of Mathematics, Dibrugarh University, Dibrugarh, 786004 Assam India.

出版信息

Cognit Comput. 2021;13(4):1019-1033. doi: 10.1007/s12559-021-09883-0. Epub 2021 May 21.

Abstract

Similarity measure (SM) proves to be a necessary tool in cognitive decision making processes. A single-valued neutrosophic set (SVNS) is just a particular instance of neutrosophic sets (NSs), which is capable of handling uncertainty and impreciseness/vagueness with a better degree of accuracy. The present article proposes two new weighted vector SMs for SVNSs, by taking the convex combination of vector SMs of Jaccard and Dice and Jaccard and cosine vector SMs. The applications of the proposed measures are validated by solving few multi-attribute decision-making (MADM) problems under neutrosophic environment. Moreover, to prevent the spread of COVID-19 outbreak, we also demonstrate the problem of selecting proper antivirus face mask with the help of our newly constructed measures. The best deserving alternative is calculated based on the highest SM values between the set of alternatives with an ideal alternative. Meticulous comparative analysis is presented to show the effectiveness of the proposed measures with the already established ones in the literature. Finally, illustrative examples are demonstrated to show the reliability, feasibility, and applicability of the proposed decision-making method. The comparison of the results manifests a fair agreement of the outcomes for the best alternative, proving that our proposed measures are effective. Moreover, the presented SMs are assured to have multifarious applications in the field of pattern recognition, image clustering, medical diagnosis, complex decision-making problems, etc. In addition, the newly constructed measures have the potential of being applied to problems of group decision making where the human cognition-based thought processes play a major role.

摘要

相似性度量(SM)被证明是认知决策过程中的一种必要工具。单值中智集(SVNS)只是中智集(NSs)的一个特殊实例,它能够以更高的准确度处理不确定性和不精确性/模糊性。本文通过对Jaccard和Dice向量相似性度量以及Jaccard和余弦向量相似性度量进行凸组合,提出了两种新的单值中智集加权向量相似性度量。通过解决中智环境下的一些多属性决策(MADM)问题,验证了所提度量的应用。此外,为防止COVID - 19疫情蔓延,我们还借助新构建的度量展示了选择合适抗病毒口罩的问题。基于备选方案集与理想方案之间的最高相似性度量值计算出最值得选择的方案。进行了细致的比较分析,以表明所提度量与文献中已有的度量相比的有效性。最后,通过示例展示了所提决策方法的可靠性、可行性和适用性。结果比较表明,对于最佳备选方案,结果具有相当的一致性,证明了我们所提度量是有效的。此外,所提出的相似性度量在模式识别、图像聚类、医学诊断、复杂决策问题等领域肯定有多种应用。此外,新构建的度量有潜力应用于群体决策问题,在这类问题中基于人类认知的思维过程起主要作用。

相似文献

本文引用的文献

6
Adaptive hypergraph learning and its application in image classification.自适应超图学习及其在图像分类中的应用。
IEEE Trans Image Process. 2012 Jul;21(7):3262-72. doi: 10.1109/TIP.2012.2190083. Epub 2012 Mar 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验