Suppr超能文献

一种用于中立集的参数相似性度量及其在能源生产中的应用。

A parametric similarity measure for neutrosophic set and its applications in energy production.

作者信息

Liu Peide, Azeem Muhammad, Sarfraz Mehwish, Swaray Senesie, Almohsen Bandar

机构信息

School of Business Administration, Shandong Women's University, Shandong, Jinan, 250300, China.

School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan, Shandong, 250014, China.

出版信息

Heliyon. 2024 Sep 30;10(19):e38272. doi: 10.1016/j.heliyon.2024.e38272. eCollection 2024 Oct 15.

Abstract

As a useful tool for managing ambiguous and inconsistent data, the Single Value Neutrosophic Set (SVNSs) is an extension of both Fuzzy Sets (FSs) and Intuitionistic Fuzzy Sets (IFSs). In the field of information theory, metrics like similarity, entropy, and distance are important. Although a number of entropy measures for SVNSs have been put forth and used in real-world situations, both academic research and real-world applications have pointed out certain drawbacks. Additionally, the Similarity Measures (SMs) is a useful instrument for determining how similar any two fuzzy values are to one another. The distance between the values allows the current SMs to evaluate the similarity. However, due to a few characteristics and intricate value operations, there are irrational and nonsensical cases. To deal with these preposterous cases, this paper proposed a parametric similarity measure in view of three parameters in which decision makers can obtain the appropriate SMs by changing parameters with different decision styles. Furthermore, we analyze some existing SMs from a mathematical perspective and demonstrate the success of the proposed SMs using mathematical models. Ultimately, we apply the suggested SMs to resolve the Multi-Attribute Decision-Making (MADM) problems. We learn from the correlation and analysis that the suggested SM outperforms certain other SMs that are based on the SVNSs.

摘要

作为管理模糊和不一致数据的有用工具,单值中智集(SVNSs)是模糊集(FSs)和直觉模糊集(IFSs)的扩展。在信息论领域,诸如相似度、熵和距离等度量很重要。尽管已经提出了一些用于SVNSs的熵度量并在实际情况中使用,但学术研究和实际应用都指出了某些缺点。此外,相似度度量(SMs)是确定任意两个模糊值彼此相似程度的有用工具。值之间的距离使当前的SMs能够评估相似度。然而,由于一些特性和复杂的值运算,存在不合理和荒谬的情况。为了处理这些荒谬的情况,本文鉴于三个参数提出了一种参数化相似度度量,决策者可以通过以不同决策风格改变参数来获得合适的SMs。此外,我们从数学角度分析了一些现有的SMs,并使用数学模型证明了所提出的SMs的成功。最终,我们应用所建议的SMs来解决多属性决策(MADM)问题。通过相关性和分析我们了解到,所建议的SM优于某些基于SVNSs的其他SMs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc0f/11493198/6fdf15574677/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验