Kruger Austin G, Brucks Spencer D, Yan Tao, Cárcarmo-Oyarce Gerardo, Wei Yuan, Wen Deborah H, Carvalho Dayanne R, Hore Michael J A, Ribbeck Katharina, Schrock Richard R, Kiessling Laura L
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
ACS Cent Sci. 2021 Apr 28;7(4):624-630. doi: 10.1021/acscentsci.0c01569. Epub 2021 Mar 30.
All animals except sponges produce mucus. Across the animal kingdom, this hydrogel mediates surface wetting, viscosity, and protection against microbes. The primary components of mucus hydrogels are mucins-high molecular weight -glycoproteins that adopt extended linear structures. Glycosylation is integral to mucin function, but other characteristics that give rise to their advantageous biological activities are unknown. We postulated that the extended conformation of mucins is critical for their ability to block microbial virulence phenotypes. To test this hypothesis, we developed synthetic mucin mimics that recapitulate the dense display of glycans and morphology of mucin. We varied the catalyst in a ring-opening metathesis polymerization (ROMP) to generate substituted norbornene-derived glycopolymers containing either cis- or trans-alkenes. Conformational analysis of the polymers based on allylic strain suggested that cis- rather than trans-poly(norbornene) glycopolymers would adopt linear structures that mimic mucins. High-resolution atomic force micrographs of our polymers and natively purified Muc2, Muc5AC, and Muc5B mucins revealed that cis-polymers adopt extended, mucin-like structures. The cis-polymers retained this structure in solution and were more water-soluble than their trans-analogs. Consistent with mucin's linear morphology, cis-glycopolymers were more potent binders of a bacterial virulence factor, cholera toxin. Our findings highlight the importance of the polymer backbone in mucin surrogate design and underscore the significance of the extended mucin backbone for inhibiting virulence.
除海绵动物外,所有动物都会分泌黏液。在整个动物界,这种水凝胶可调节表面湿润度、黏度并抵御微生物。黏液水凝胶的主要成分是黏蛋白——具有延伸线性结构的高分子量糖蛋白。糖基化对于黏蛋白功能至关重要,但其产生有利生物活性的其他特性尚不清楚。我们推测,黏蛋白的延伸构象对于其阻断微生物毒力表型的能力至关重要。为了验证这一假设,我们开发了合成黏蛋白模拟物,其重现了聚糖的密集展示和黏蛋白的形态。我们在开环易位聚合反应(ROMP)中改变催化剂,以生成含有顺式或反式烯烃的取代降冰片烯衍生糖聚合物。基于烯丙基应变的聚合物构象分析表明,顺式而非反式聚(降冰片烯)糖聚合物将采用模仿黏蛋白的线性结构。我们的聚合物以及天然纯化的Muc2、Muc5AC和Muc5B黏蛋白的高分辨率原子力显微镜图像显示,顺式聚合物采用延伸的、类似黏蛋白的结构。顺式聚合物在溶液中保留了这种结构,并且比其反式类似物更易溶于水。与黏蛋白的线性形态一致,顺式糖聚合物是细菌毒力因子霍乱毒素的更强结合剂。我们的研究结果突出了聚合物主链在黏蛋白替代物设计中的重要性,并强调了延伸的黏蛋白主链对抑制毒力的重要性。