Al Omari Rima H, Almatarneh Mansour H, Alnajajrah Asmaa Y, Al-Sheraideh Mohammed S, Al Abbad Sanaa S, Alsunaidi Zainab H A
Pharmacological and Diagnostic Research Centre (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
Department of Chemistry, University of Jordan, Amman 11942, Jordan.
ACS Omega. 2021 May 12;6(20):13365-13374. doi: 10.1021/acsomega.1c01318. eCollection 2021 May 25.
A thorough computational study of a thermal degradation mechanism of 2-ethoxyethanol (2-EE) in the gas phase has been implemented using G3MP2 and G3B3 methods. The stationary point geometries were optimized at the B3LYP functional utilizing the 6-31G(d) basis set. Intrinsic reaction coordinate analysis was performed to determine the transition states on the potential energy surfaces. Nineteen primary different reaction mechanisms, along with the kinetic and thermodynamic parameters, are demonstrated. Most of the thermal degradation mechanisms result in a concerted transition state step as an endothermic process. Among 11 degradation pathways of 2-ethoxyethanol, the formation of ethylene glycol and ethylene is kinetically significant with an activation energy of 269 kJ mol at the G3B3 method. However, the kinetic and thermodynamic calculations indicate that ethanol and ethanal's formation is the most plausible reaction with an activation barrier of 287 kJ mol at the G3B3 method. For the bimolecular dissociation reaction of 2-ethoxyethanol with ethanol, the pathway that produces ether, H, and ethanol is more likely to occur with a lower activation energy of 221 kJ mol at the G3B3 method. Thus, 2-EE has experienced a set of complex unimolecular and bimolecular reactions.
已使用G3MP2和G3B3方法对气相中2-乙氧基乙醇(2-EE)的热降解机理进行了全面的计算研究。在B3LYP泛函下利用6-31G(d)基组对驻点几何结构进行了优化。进行了内禀反应坐标分析以确定势能面上的过渡态。展示了19种主要的不同反应机理以及动力学和热力学参数。大多数热降解机理导致协同过渡态步骤成为吸热过程。在2-乙氧基乙醇的11条降解途径中,乙二醇和乙烯的形成在动力学上具有重要意义,在G3B3方法下活化能为269 kJ/mol。然而,动力学和热力学计算表明,乙醇和乙醛的形成是最合理的反应,在G3B3方法下活化能垒为287 kJ/mol。对于2-乙氧基乙醇与乙醇的双分子解离反应,生成醚、H和乙醇的途径更有可能发生,在G3B3方法下活化能较低,为221 kJ/mol。因此,2-EE经历了一系列复杂的单分子和双分子反应。