Suppr超能文献

激光诱导应力波导致的生物膜破裂随加载幅度增加,与位置无关。

Biofilm rupture by laser-induced stress waves increases with loading amplitude, independent of location.

作者信息

Kearns Kaitlyn L, Boyd James D, Grady Martha E

机构信息

Department of Mechanical Engineering, University of Kentucky, 506 Administration Drive, Lexington, KY, 40506.

出版信息

ACS Appl Bio Mater. 2020 Mar 16;3(3):1426-1433. doi: 10.1021/acsabm.9b01085. Epub 2020 Feb 12.

Abstract

Integral to the production of safe and biocompatible medical devices is to determine the interfacial properties that affect or control strong biofilm adhesion. The laser spallation technique has recently emerged as an advantageous method to quantify biofilm adhesion across candidate biomedical surfaces. However, there is a possibility that membrane tension is a factor that contributes to the stress required to separate biofilm and substrate. In that case, the stress amplitude, controlled by laser fluence, that initiates biofilm rupture would vary systematically with location on the biofilm. Film rupture, also known as spallation, occurs when film material is ejected during stress wave loading. In order to determine effects of membrane tension on the laser spallation process, we present a protocol that measures spall size with increasing laser fluence (variable fluence) and with respect to distance from the biofilm centroid (iso-fluence). biofilms on titanium substrates serve as our model system. A total of 185 biofilm loading locations are analyzed in this study. We demonstrate that biofilm spall size increases monotonically with laser fluence and apply our procedure to failure of non-biological films. In iso-fluence experiments, no correlation is found between biofilm spall size and loading location, thus providing evidence that membrane tension does not play a dominant role in biofilm adhesion measurements. We recommend our procedure as a straightforward method to determine membrane effects in the measurement of adhesion of biological films on substrate surfaces via the laser spallation technique.

摘要

生产安全且具有生物相容性的医疗设备的一个关键环节是确定影响或控制生物膜强烈粘附的界面特性。激光散裂技术最近已成为一种量化候选生物医学表面生物膜粘附力的有效方法。然而,膜张力有可能是导致生物膜与基底分离所需应力的一个因素。在这种情况下,由激光能量密度控制的引发生物膜破裂的应力幅度会随着生物膜上位置的不同而系统地变化。当薄膜材料在应力波加载过程中被弹出时,薄膜破裂,也称为散裂。为了确定膜张力对激光散裂过程的影响,我们提出了一种方案,该方案通过增加激光能量密度(可变能量密度)并相对于距生物膜质心的距离(等能量密度)来测量散裂尺寸。钛基底上的生物膜作为我们的模型系统。本研究共分析了185个生物膜加载位置。我们证明生物膜散裂尺寸随激光能量密度单调增加,并将我们的方法应用于非生物薄膜的破坏。在等能量密度实验中,未发现生物膜散裂尺寸与加载位置之间存在相关性,从而提供了证据表明膜张力在生物膜粘附力测量中不发挥主导作用。我们推荐我们的方法作为一种直接的方法,通过激光散裂技术来确定在测量生物膜在基底表面的粘附力时的膜效应。

相似文献

5
Sucrose-mediated formation and adhesion strength of biofilms on titanium.蔗糖介导的生物膜在钛表面的形成及黏附强度
Biofilm. 2023 Jul 11;6:100143. doi: 10.1016/j.bioflm.2023.100143. eCollection 2023 Dec 15.

本文引用的文献

2
7
Tensional homeostasis in endothelial cells is a multicellular phenomenon.内皮细胞中的张力稳态是一种多细胞现象。
Am J Physiol Cell Physiol. 2016 Sep 1;311(3):C528-35. doi: 10.1152/ajpcell.00037.2016. Epub 2016 Aug 3.
8
Antibacterial titanium surfaces for medical implants.医用植入物的抗菌钛表面。
Mater Sci Eng C Mater Biol Appl. 2016 Apr 1;61:965-78. doi: 10.1016/j.msec.2015.12.062. Epub 2015 Dec 31.
9
Strategies for combating bacterial biofilm infections.对抗细菌生物膜感染的策略。
Int J Oral Sci. 2015 Mar 23;7(1):1-7. doi: 10.1038/ijos.2014.65.
10
Molecular tailoring of interfacial failure.界面失效的分子定制
Langmuir. 2014 Sep 23;30(37):11096-102. doi: 10.1021/la502271k. Epub 2014 Sep 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验