Business School, Sichuan University, Chengdu, China.
West China Hospital of Sichuan University, Chengdu, China.
Int J Health Plann Manage. 2021 Sep;36(5):1714-1726. doi: 10.1002/hpm.3246. Epub 2021 Jun 1.
Provide new methods to predict the number of hospital blood collections.
The registered outpatients and blood collection patients in a large hospital in China in the period from March 2018 to April 2019 were enrolled in the study. Firstly, we analyzed the time series characteristics of the daily blood collection patients and their correlation with the number of daily outpatients. Then, we used the time series ARIMA and linear regression methods to build the periodic trend model of the blood collections number prediction and the regression prediction model with the number of registered outpatients as an independent variable. Finally, we built a combined prediction model considering mixed time series to predict the number of blood collections in the hospital.
The combined prediction model has a higher accuracy and can better explore the characteristics of the number of blood collections compared with other models. It can also give some suggestions for a reasonable blood collection management.
The combined prediction model of mixed time series can reflect the change in the blood collections number due to the influence of internal and external factors and can realize the blood collection prediction with a higher accuracy providing a new method for the prediction of the blood collections number.
提供预测医院采血数量的新方法。
本研究纳入了 2018 年 3 月至 2019 年 4 月期间中国一家大型医院的登记门诊患者和采血患者。首先,我们分析了每日采血患者的时间序列特征及其与每日门诊患者数量的相关性。然后,我们使用时间序列 ARIMA 和线性回归方法构建采血数量预测的周期性趋势模型,以及以登记门诊患者数量为自变量的回归预测模型。最后,我们构建了一个考虑混合时间序列的组合预测模型,以预测医院的采血数量。
与其他模型相比,组合预测模型具有更高的准确性,能够更好地探索采血数量的特征。它还可以为合理的采血管理提供一些建议。
混合时间序列的组合预测模型可以反映内部和外部因素对采血数量变化的影响,实现更高精度的采血预测,为采血数量预测提供了一种新方法。