Suppr超能文献

用于预测中国海上急诊患者动态的统计机器学习模型:ARIMA 模型、SARIMA 模型和动态贝叶斯网络模型。

Statistical machine learning models for prediction of China's maritime emergency patients in dynamic: ARIMA model, SARIMA model, and dynamic Bayesian network model.

机构信息

Department of Nursing, West China Hospital, Sichuan University, Chengdu, China.

Department of Nursing, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Front Public Health. 2024 Jun 27;12:1401161. doi: 10.3389/fpubh.2024.1401161. eCollection 2024.

Abstract

INTRODUCTION

Rescuing individuals at sea is a pressing global public health issue, garnering substantial attention from emergency medicine researchers with a focus on improving prevention and control strategies. This study aims to develop a Dynamic Bayesian Networks (DBN) model utilizing maritime emergency incident data and compare its forecasting accuracy to Auto-regressive Integrated Moving Average (ARIMA) and Seasonal Auto-regressive Integrated Moving Average (SARIMA) models.

METHODS

In this research, we analyzed the count of cases managed by five hospitals in Hainan Province from January 2016 to December 2020 in the context of maritime emergency care. We employed diverse approaches to construct and calibrate ARIMA, SARIMA, and DBN models. These models were subsequently utilized to forecast the number of emergency responders from January 2021 to December 2021. The study indicated that the ARIMA, SARIMA, and DBN models effectively modeled and forecasted Maritime Emergency Medical Service (EMS) patient data, accounting for seasonal variations. The predictive accuracy was evaluated using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Coefficient of Determination ( ) as performance metrics.

RESULTS

In this study, the ARIMA, SARIMA, and DBN models reported RMSE of 5.75, 4.43, and 5.45; MAE of 4.13, 2.81, and 3.85; and values of 0.21, 0.54, and 0.44, respectively. MAE and RMSE assess the level of difference between the actual and predicted values. A smaller value indicates a more accurate model prediction. can compare the performance of models across different aspects, with a range of values from 0 to 1. A value closer to 1 signifies better model quality. As errors increase, moves further from the maximum value. The SARIMA model outperformed the others, demonstrating the lowest RMSE and MAE, alongside the highest , during both modeling and forecasting. Analysis of predicted values and fitting plots reveals that, in most instances, SARIMA's predictions closely align with the actual number of rescues. Thus, SARIMA is superior in both fitting and forecasting, followed by the DBN model, with ARIMA showing the least accurate predictions.

DISCUSSION

While the DBN model adeptly captures variable correlations, the SARIMA model excels in forecasting maritime emergency cases. By comparing these models, we glean valuable insights into maritime emergency trends, facilitating the development of effective prevention and control strategies.

摘要

介绍

在海上救援个人是一个紧迫的全球公共卫生问题,引起了急诊医学研究人员的极大关注,他们专注于改进预防和控制策略。本研究旨在利用海上紧急事件数据开发动态贝叶斯网络 (DBN) 模型,并将其预测准确性与自回归综合移动平均 (ARIMA) 和季节性自回归综合移动平均 (SARIMA) 模型进行比较。

方法

本研究分析了 2016 年 1 月至 2020 年 12 月期间海南省五家医院管理的海上紧急事件数据。我们采用了多种方法来构建和校准 ARIMA、SARIMA 和 DBN 模型。这些模型随后用于预测 2021 年 1 月至 2021 年 12 月的紧急救援人员人数。研究表明,ARIMA、SARIMA 和 DBN 模型有效地对海上紧急医疗服务 (EMS) 患者数据进行了建模和预测,考虑了季节性变化。预测准确性通过平均绝对误差 (MAE)、均方根误差 (RMSE) 和确定系数 ( ) 作为性能指标进行评估。

结果

本研究中,ARIMA、SARIMA 和 DBN 模型报告的 RMSE 分别为 5.75、4.43 和 5.45;MAE 分别为 4.13、2.81 和 3.85; 分别为 0.21、0.54 和 0.44。MAE 和 RMSE 评估实际值与预测值之间的差异水平。较小的值表示更准确的模型预测。 可以比较不同方面的模型性能,取值范围为 0 到 1。值越接近 1,表明模型质量越好。随着误差的增加, 更接近最大值。SARIMA 模型表现优于其他模型,在建模和预测过程中均表现出最低的 RMSE 和 MAE,以及最高的 。分析预测值和拟合图表明,在大多数情况下,SARIMA 的预测与实际救援次数密切吻合。因此,SARIMA 在拟合和预测方面都更优,其次是 DBN 模型,而 ARIMA 的预测最不准确。

讨论

虽然 DBN 模型能够很好地捕捉变量相关性,但 SARIMA 模型在预测海上紧急事件方面表现出色。通过比较这些模型,我们深入了解了海上紧急趋势,为制定有效的预防和控制策略提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aad1/11252837/5720d1cd9fdc/fpubh-12-1401161-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验