Suppr超能文献

利用深度学习在脑灌注单光子发射计算机断层扫描中进行衰减校正方法的开发。

Development of attenuation correction methods using deep learning in brain-perfusion single-photon emission computed tomography.

机构信息

Department of Radiology, Chiba University Hospital, Chiba, 260-8677, Japan.

Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.

出版信息

Med Phys. 2021 Aug;48(8):4177-4190. doi: 10.1002/mp.15016. Epub 2021 Jun 28.

Abstract

PURPOSE

Computed tomography (CT)-based attenuation correction (CTAC) in single-photon emission computed tomography (SPECT) is highly accurate, but it requires hybrid SPECT/CT instruments and additional radiation exposure. To obtain attenuation correction (AC) without the need for additional CT images, a deep learning method was used to generate pseudo-CT images has previously been reported, but it is limited because of cross-modality transformation, resulting in misalignment and modality-specific artifacts. This study aimed to develop a deep learning-based approach using non-attenuation-corrected (NAC) images and CTAC-based images for training to yield AC images in brain-perfusion SPECT. This study also investigated whether the proposed approach is superior to conventional Chang's AC (ChangAC).

METHODS

In total, 236 patients who underwent brain-perfusion SPECT were randomly divided into two groups: the training group (189 patients; 80%) and the test group (47 patients; 20%). Two models were constructed using Autoencoder (AutoencoderAC) and U-Net (U-NetAC), respectively. ChangAC, AutoencoderAC, and U-NetAC approaches were compared with CTAC using qualitative analysis (visual evaluation) and quantitative analysis (normalized mean squared error [NMSE] and the percentage error in each brain region). Statistical analyses were performed using the Wilcoxon signed-rank sum test and Bland-Altman analysis.

RESULTS

U-NetAC had the highest visual evaluation score. The NMSE results for the U-NetAC were the lowest, followed by AutoencoderAC and ChangAC (P < 0.001). Bland-Altman analysis showed a fixed bias for ChangAC and AutoencoderAC and a proportional bias for ChangAC. ChangAC underestimated counts by 30-40% in all brain regions. AutoencoderAC and U-NetAC produced mean errors of <1% and maximum errors of 3%, respectively.

CONCLUSION

New deep learning-based AC methods for AutoencoderAC and U-NetAC were developed. Their accuracy was higher than that obtained by ChangAC. U-NetAC exhibited higher qualitative and quantitative accuracy than AutoencoderAC. We generated highly accurate AC images directly from NAC images without the need for intermediate pseudo-CT images. To verify our models' generalizability, external validation is required.

摘要

目的

单光子发射计算机断层扫描(SPECT)中的计算机断层扫描(CT)衰减校正(CTAC)非常准确,但需要混合 SPECT/CT 仪器和额外的辐射暴露。为了在不需要额外 CT 图像的情况下获得衰减校正(AC),以前已经报道了使用深度学习方法生成伪 CT 图像,但由于跨模态转换,存在对准和模态特定伪影的限制。本研究旨在开发一种基于深度学习的方法,使用未经衰减校正(NAC)的图像和基于 CTAC 的图像进行训练,以产生脑灌注 SPECT 中的 AC 图像。本研究还探讨了所提出的方法是否优于传统的 Chang's AC(ChangAC)。

方法

总共 236 名接受脑灌注 SPECT 的患者被随机分为两组:训练组(189 名患者;80%)和测试组(47 名患者;20%)。分别使用自动编码器(AutoencoderAC)和 U-Net(U-NetAC)构建了两个模型。使用定性分析(视觉评估)和定量分析(归一化均方误差 [NMSE] 和每个脑区的误差百分比)比较了 ChangAC、AutoencoderAC 和 U-NetAC 方法与 CTAC。使用 Wilcoxon 符号秩和检验和 Bland-Altman 分析进行统计分析。

结果

U-NetAC 的视觉评估得分最高。U-NetAC 的 NMSE 结果最低,其次是 AutoencoderAC 和 ChangAC(P < 0.001)。Bland-Altman 分析显示 ChangAC 和 AutoencoderAC 存在固定偏差,ChangAC 存在比例偏差。ChangAC 在所有脑区均低估了 30-40%的计数。AutoencoderAC 和 U-NetAC 分别产生了 <1%的平均误差和 3%的最大误差。

结论

开发了用于 AutoencoderAC 和 U-NetAC 的新的基于深度学习的 AC 方法。它们的准确性高于 ChangAC。U-NetAC 的定性和定量准确性均高于 AutoencoderAC。我们直接从未经衰减校正的图像生成高度准确的 AC 图像,而无需中间的伪 CT 图像。为了验证我们模型的泛化能力,需要进行外部验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验