Suppr超能文献

基于深度学习的脑灌注 SPECT 图像衰减校正。

Attenuation correction using deep learning for brain perfusion SPECT images.

机构信息

Radiology Center, Kindai University Hospital, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.

Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University, Osaka, 589-8511, Japan.

出版信息

Ann Nucl Med. 2021 May;35(5):589-599. doi: 10.1007/s12149-021-01600-z. Epub 2021 Mar 9.

Abstract

OBJECTIVE

Non-uniform attenuation correction using computed tomography (CT) improves the image quality and quantification of single-photon emission computed tomography (SPECT). However, it is not widely used because it requires a SPECT/CT scanner. This study constructs a convolutional neural network (CNN) to generate attenuation-corrected SPECT images directly from non-attenuation-corrected SPECT images.

METHODS

We constructed an auto-encoder (AE) using a CNN to correct the attenuation in brain perfusion SPECT images. SPECT image datasets of 270 (44,528 slices including augmentation), 60 (5002 slices), and 30 (2558 slices) cases were used for training, validation, and testing, respectively. The acquired projection data were reconstructed in three patterns: uniform attenuation correction using Chang's method (Chang-AC), non-uniform attenuation correction using CT (CT-AC), and no attenuation correction (No-AC). The AE learned an end-to-end mapping between the No-AC and CT-AC images. The No-AC images in the test dataset were loaded into the trained AE, which generated images simulating the CT-AC images as output. The generated SPECT images were employed as attenuation-corrected images using the AE (AE-AC). The accuracy of the AE-AC images was evaluated in terms of the peak signal-to-noise ratio (PSNR) and the structural similarity metric (SSIM). The intensities of the AE-AC and CT-AC images were compared by voxel-by-voxel and region-by-region analysis.

RESULTS

The PSNRs of the AE-AC and Chang-AC images, compared using CT-AC images, were 62.2, and 57.9, and their SSIM values were 0.9995 and 0.9985, respectively. The AE-AC and CT-AC images were visually and statistically in good agreement.

CONCLUSIONS

The proposed AE-AC method yields highly accurate attenuation-corrected brain perfusion SPECT images.

摘要

目的

使用计算机断层扫描(CT)进行非均匀衰减校正可以提高单光子发射计算机断层扫描(SPECT)的图像质量和定量分析。然而,由于需要 SPECT/CT 扫描仪,因此该方法并未得到广泛应用。本研究构建了一个卷积神经网络(CNN),可以直接从未经衰减校正的 SPECT 图像生成衰减校正的 SPECT 图像。

方法

我们使用 CNN 构建了一个自动编码器(AE),以校正脑灌注 SPECT 图像的衰减。分别使用 270 个病例(包括扩充后的 44528 个切片)、60 个病例(5002 个切片)和 30 个病例(2558 个切片)的 SPECT 图像数据集进行训练、验证和测试。采集的投影数据采用三种模式进行重建:Chang 法的均匀衰减校正(Chang-AC)、CT 的非均匀衰减校正(CT-AC)和无衰减校正(No-AC)。AE 学习了 No-AC 和 CT-AC 图像之间的端到端映射。将测试数据集的 No-AC 图像加载到训练好的 AE 中,AE 生成模拟 CT-AC 图像的输出图像。生成的 SPECT 图像用作 AE(AE-AC)的衰减校正图像。根据峰值信噪比(PSNR)和结构相似性度量(SSIM)评估 AE-AC 图像的准确性。通过体素和区域分析比较了 AE-AC 和 CT-AC 图像的强度。

结果

与 CT-AC 图像相比,AE-AC 和 Chang-AC 图像的 PSNR 分别为 62.2 和 57.9,SSIM 值分别为 0.9995 和 0.9985。AE-AC 和 CT-AC 图像在视觉上和统计学上均高度一致。

结论

所提出的 AE-AC 方法可生成高度准确的脑灌注 SPECT 衰减校正图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验