Institut Curie, Centre de Recherche, CNRS UMR3244, PSL Research University, 26 rue d'Ulm, 75248, Paris, Cedex 05, France; Meiogenix, 38 rue Servan, 75544, Paris, Cedex 11, France.
ICGEX NGS Platform, Institut Curie, 26 rue d'Ulm, 75248, Paris, Cedex 05, France.
Microbiol Res. 2021 Sep;250:126789. doi: 10.1016/j.micres.2021.126789. Epub 2021 May 21.
The sustainable future of food industry and consumer demands meet the need to generate out-performing new yeast variants. This is addressed by using the natural yeast diversity and breeding via sexual reproduction but the recovery of recombined spores in many industrial strains is limited. To circumvent this drawback, we examined whether or not the process of meiotic Return to Growth (RTG) that allows S. cerevisiae diploid cells to initiate meiotic recombination genome-wide and then re-enter into mitosis, will be effective to generate recombinants in a sterile and polyploid baking yeast strain (CNCM). We proceeded in four steps. First, whole genome sequencing of the CNCM strain revealed that it was an unbalanced polymorphic triploid. Second, we annotated a panel of genes likely involved in the success of the RTG process. Third, we examined the strain progression into sporulation and fourth, we developed an elutriation and reiterative RTG protocol that allowed to generate extensive libraries of recombinant RTGs, enriched up to 70 %. Altogether, the genome analysis of 122 RTG cells demonstrated that they were bona fide RTG recombinants since the vast majority retained the parental ploidy and exhibited allelic variations involving 1-60 recombined regions per cell with a length of ∼0.4-400 kb. Thus, beyond diploid laboratory strains, we demonstrated the proficiency of this natural non-GM and marker-free process to recombine a sterile and polyploid hybrid yeast, thus providing an unprecedented resource to screen improved traits.
食品工业的可持续未来和消费者的需求促使我们需要开发出表现更优的新型酵母。这可以通过利用天然酵母多样性和有性繁殖来实现,但许多工业菌株中重组孢子的回收是有限的。为了解决这个问题,我们研究了有丝分裂的减数分裂返回生长(RTG)过程是否能够有效地在无菌和多倍体烘焙酵母菌株(CNCM)中产生重组体。我们分四步进行。首先,对 CNCM 菌株进行全基因组测序,结果表明它是一种不平衡的多态性三倍体。其次,我们注释了一组可能参与 RTG 过程的基因。然后,我们观察了该菌株进入孢子形成的过程,最后,我们开发了一种淘洗和反复 RTG 方案,该方案能够产生丰富的重组 RTG 文库,富集度高达 70%。总之,对 122 个 RTG 细胞的基因组分析表明,它们是真正的 RTG 重组体,因为绝大多数细胞保留了亲本的倍性,并表现出涉及每个细胞 1-60 个重组区域的等位基因变异,长度约为 0.4-400kb。因此,除了二倍体实验室菌株外,我们还证明了这种天然的非转基因和无标记过程能够重组一个无菌和多倍体的杂种酵母,从而为筛选改良特性提供了一个前所未有的资源。