Suppr超能文献

无监督样本域感知图像到图像翻译

Unsupervised Exemplar-Domain Aware Image-to-Image Translation.

作者信息

Fu Yuanbin, Ma Jiayi, Guo Xiaojie

机构信息

College of Intelligence and Computing, Tianjin University, Tianjin 300350, China.

Electronic Information School, Wuhan University, Wuhan 430072, China.

出版信息

Entropy (Basel). 2021 May 2;23(5):565. doi: 10.3390/e23050565.

Abstract

Image-to-image translation is used to convert an image of a certain style to another of the target style with the original content preserved. A desired translator should be capable of generating diverse results in a controllable many-to-many fashion. To this end, we design a novel deep translator, namely exemplar-domain aware image-to-image translator (EDIT for short). From a logical perspective, the translator needs to perform two main functions, i.e., feature extraction and style transfer. With consideration of logical network partition, the generator of our EDIT comprises of a part of blocks configured by shared parameters, and the rest by varied parameters exported by an exemplar-domain aware parameter network, for explicitly imitating the functionalities of extraction and mapping. The principle behind this is that, for images from multiple domains, the content features can be obtained by an extractor, while (re-)stylization is achieved by mapping the extracted features specifically to different purposes (domains and exemplars). In addition, a discriminator is equipped during the training phase to guarantee the output satisfying the distribution of the target domain. Our EDIT can flexibly and effectively work on multiple domains and arbitrary exemplars in a unified neat model. We conduct experiments to show the efficacy of our design, and reveal its advances over other state-of-the-art methods both quantitatively and qualitatively.

摘要

图像到图像的翻译用于将某种风格的图像转换为具有保留原始内容的目标风格的另一图像。理想的翻译器应能够以可控的多对多方式生成多样化的结果。为此,我们设计了一种新颖的深度翻译器,即样本域感知图像到图像翻译器(简称为EDIT)。从逻辑角度来看,翻译器需要执行两个主要功能,即特征提取和风格转换。考虑到逻辑网络划分,我们的EDIT生成器由一部分由共享参数配置的块组成,其余部分由样本域感知参数网络导出的不同参数组成,用于明确模仿提取和映射的功能。其背后的原理是,对于来自多个域的图像,内容特征可以由提取器获得,而(重新)风格化是通过将提取的特征专门映射到不同目的(域和样本)来实现的。此外,在训练阶段配备了一个鉴别器,以确保输出满足目标域的分布。我们的EDIT可以在一个统一简洁的模型中灵活有效地处理多个域和任意样本。我们进行实验以展示我们设计的有效性,并在定量和定性方面揭示其相对于其他现有最先进方法的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b7/8147429/e8eab33f98b6/entropy-23-00565-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验