Suppr超能文献

关于恰当四元数变分自编码器的信息论视角。

An Information-Theoretic Perspective on Proper Quaternion Variational Autoencoders.

作者信息

Grassucci Eleonora, Comminiello Danilo, Uncini Aurelio

机构信息

Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy.

出版信息

Entropy (Basel). 2021 Jul 3;23(7):856. doi: 10.3390/e23070856.

Abstract

Variational autoencoders are deep generative models that have recently received a great deal of attention due to their ability to model the latent distribution of any kind of input such as images and audio signals, among others. A novel variational autoncoder in the quaternion domain H, namely the QVAE, has been recently proposed, leveraging the augmented second order statics of H-proper signals. In this paper, we analyze the QVAE under an information-theoretic perspective, studying the ability of the H-proper model to approximate improper distributions as well as the built-in H-proper ones and the loss of entropy due to the improperness of the input signal. We conduct experiments on a substantial set of quaternion signals, for each of which the QVAE shows the ability of modelling the input distribution, while learning the improperness and increasing the entropy of the latent space. The proposed analysis will prove that proper QVAEs can be employed with a good approximation even when the quaternion input data are improper.

摘要

变分自编码器是一种深度生成模型,由于其能够对诸如图像和音频信号等任何类型输入的潜在分布进行建模,最近受到了广泛关注。最近提出了一种在四元数域H中的新型变分自编码器,即QVAE,它利用了H-恰当信号的增强二阶统计量。在本文中,我们从信息论的角度分析QVAE,研究H-恰当模型逼近非恰当分布以及内置的H-恰当分布的能力,以及由于输入信号的非恰当性导致的熵损失。我们对大量四元数信号进行了实验,对于每个信号,QVAE都显示出对输入分布进行建模的能力,同时学习非恰当性并增加潜在空间的熵。所提出的分析将证明,即使四元数输入数据是非恰当的,恰当的QVAE也可以很好地逼近使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/8305877/bdaa911681b2/entropy-23-00856-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验