Suppr超能文献

用于微流控气体提取与传感的超疏水虚拟壁的快速制造

Rapid Fabrication of Superhydrophobic Virtual Walls for Microfluidic Gas Extraction and Sensing.

作者信息

Raj Wojciech, Yang Daisy, Priest Craig

机构信息

Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland.

Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.

出版信息

Micromachines (Basel). 2021 May 2;12(5):514. doi: 10.3390/mi12050514.

Abstract

Based on the virtual walls concept, where fluids are guided by wettability, we demonstrate the application of a gas phase extraction microfluidic chip. Unlike in previous work, the chip is prepared using a simple, rapid, and low-cost fabrication method. Channels were cut into double-sided adhesive tape (280 µm thick) and bonded to hydrophilic glass slides. The tape was selectively made superhydrophobic by 'dusting' with hydrophobic silica gel to enhance the wettability contrast at the virtual walls. Finally, the two glass slides were bonded using tape, which acts as a spacer for gas transport from/to the guided liquids. In our example, the virtual walls create a stable liquid-vapor-liquid flow configuration for the extraction of a volatile analyte (ammonia), from one liquid stream to the other through the intermediate vapor phase. The collector stream contained a pH indicator to visualize the mass transport. Quantitative analysis of ammonium hydroxide in the sample stream (<1 mM) was possible using a characteristic onset time, where the first pH change in the collector stream was detected. The effect of gap length, flow rates, and pH of the collector stream on the onset time is demonstrated. Finally, we demonstrate the analysis of ammonium hydroxide in artificial human saliva to show that the virtual walls chip is suitable for extracting volatile analytes from biofluids.

摘要

基于虚拟壁概念,即流体由润湿性引导,我们展示了气相萃取微流控芯片的应用。与之前的工作不同,该芯片采用简单、快速且低成本的制造方法制备。在双面胶带(280微米厚)上切割通道,并将其粘结到亲水性载玻片上。通过用疏水性硅胶“喷粉”使胶带选择性地具有超疏水性,以增强虚拟壁处的润湿性对比度。最后,使用胶带将两个载玻片粘结在一起,该胶带用作气体进出被引导液体的间隔物。在我们的示例中,虚拟壁为挥发性分析物(氨)从一种液流通过中间气相萃取到另一种液流创造了稳定的液 - 气 - 液流动配置。收集液流中含有pH指示剂以可视化传质过程。使用特征起始时间对样品流中氢氧化铵(<1 mM)进行定量分析成为可能,在该起始时间可检测到收集液流中的首次pH变化。展示了间隙长度、流速和收集液流pH对起始时间的影响。最后,我们展示了对人工人唾液中氢氧化铵的分析,以表明虚拟壁芯片适用于从生物流体中萃取挥发性分析物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fda9/8147491/96c2aad3c428/micromachines-12-00514-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验