Suppr超能文献

基于 FPGA 的振动信号、统计时间特征和支持向量机的变压器匝间短路故障诊断

Short-Circuited Turn Fault Diagnosis in Transformers by Using Vibration Signals, Statistical Time Features, and Support Vector Machines on FPGA.

机构信息

ENAP-Research Group, CA-Sistemas Dinámicos y Control, Laboratorio de Sistemas y Equipos Eléctricos (LaSEE), Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río, CP 76807, Mexico.

ENAP-Research Group, CA-Fuentes Alternas y Calidad de la Energía Eléctrica, Departamento de Ingeniería Electromecánica, Tecnológico Nacional de México, Instituto Tecnológico Superior de Irapuato (ITESI), Carr. Irapuato-Silao km 12.5, Colonia El Copal, Irapuato, Guanajuato, CP 36821, Mexico.

出版信息

Sensors (Basel). 2021 May 21;21(11):3598. doi: 10.3390/s21113598.

Abstract

One of the most critical devices in an electrical system is the transformer. It is continuously under different electrical and mechanical stresses that can produce failures in its components and other electrical network devices. The short-circuited turns (SCTs) are a common winding failure. This type of fault has been widely studied in literature employing the vibration signals produced in the transformer. Although promising results have been obtained, it is not a trivial task if different severity levels and a common high-level noise are considered. This paper presents a methodology based on statistical time features (STFs) and support vector machines (SVM) to diagnose a transformer under several SCTs conditions. As STFs, 19 indicators from the transformer vibration signals are computed; then, the most discriminant features are selected using the Fisher score analysis, and the linear discriminant analysis is used for dimension reduction. Finally, a support vector machine classifier is employed to carry out the diagnosis in an automatic way. Once the methodology has been developed, it is implemented on a field-programmable gate array (FPGA) to provide a system-on-a-chip solution. A modified transformer capable of emulating different SCTs severities is employed to validate and test the methodology and its FPGA implementation. Results demonstrate the effectiveness of the proposal for diagnosing the transformer condition as an accuracy of 96.82% is obtained.

摘要

电力系统中最重要的设备之一是变压器。它经常受到不同的电气和机械应力的影响,这些应力可能会导致其部件和其他电网设备发生故障。匝间短路 (SCT) 是一种常见的绕组故障。这种类型的故障在文献中已经得到了广泛的研究,利用变压器产生的振动信号来进行故障诊断。尽管已经取得了有希望的结果,但如果考虑不同的严重程度和常见的高水平噪声,这并不是一项简单的任务。本文提出了一种基于统计时间特征 (STFs) 和支持向量机 (SVM) 的方法,用于诊断几种 SCT 条件下的变压器。作为 STFs,从变压器振动信号中计算了 19 个指标;然后,使用 Fisher 得分分析选择最具判别力的特征,并使用线性判别分析进行降维。最后,采用支持向量机分类器自动进行诊断。该方法开发完成后,将其在现场可编程门阵列 (FPGA) 上实现,以提供片上系统解决方案。采用一种可模拟不同 SCT 严重程度的改进型变压器来验证和测试该方法及其 FPGA 实现。结果表明,该方法对于诊断变压器的状况非常有效,其准确率达到了 96.82%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验