Callewaert Bram, Jones Elizabeth A V, Himmelreich Uwe, Gsell Willy
Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium.
CMVB, Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium.
Diagnostics (Basel). 2021 May 21;11(6):926. doi: 10.3390/diagnostics11060926.
Alterations to the cerebral microcirculation have been recognized to play a crucial role in the development of neurodegenerative disorders. However, the exact role of the microvascular alterations in the pathophysiological mechanisms often remains poorly understood. The early detection of changes in microcirculation and cerebral blood flow (CBF) can be used to get a better understanding of underlying disease mechanisms. This could be an important step towards the development of new treatment approaches. Animal models allow for the study of the disease mechanism at several stages of development, before the onset of clinical symptoms, and the verification with invasive imaging techniques. Specifically, pre-clinical magnetic resonance imaging (MRI) is an important tool for the development and validation of MRI sequences under clinically relevant conditions. This article reviews MRI strategies providing indirect non-invasive measurements of microvascular changes in the rodent brain that can be used for early detection and characterization of neurodegenerative disorders. The perfusion MRI techniques: Dynamic Contrast Enhanced (DCE), Dynamic Susceptibility Contrast Enhanced (DSC) and Arterial Spin Labeling (ASL), will be discussed, followed by less established imaging strategies used to analyze the cerebral microcirculation: Intravoxel Incoherent Motion (IVIM), Vascular Space Occupancy (VASO), Steady-State Susceptibility Contrast (SSC), Vessel size imaging, SAGE-based DSC, Phase Contrast Flow (PC) Quantitative Susceptibility Mapping (QSM) and quantitative Blood-Oxygenation-Level-Dependent (qBOLD). We will emphasize the advantages and limitations of each strategy, in particular on applications for high-field MRI in the rodent's brain.
大脑微循环的改变被认为在神经退行性疾病的发展中起着关键作用。然而,微血管改变在病理生理机制中的确切作用往往仍不清楚。早期检测微循环和脑血流量(CBF)的变化有助于更好地理解潜在的疾病机制。这可能是朝着开发新治疗方法迈出的重要一步。动物模型能够在临床症状出现之前,在疾病发展的几个阶段研究疾病机制,并通过侵入性成像技术进行验证。具体而言,临床前磁共振成像(MRI)是在临床相关条件下开发和验证MRI序列的重要工具。本文综述了MRI策略,这些策略可提供对啮齿动物大脑微血管变化的间接非侵入性测量,可用于神经退行性疾病的早期检测和特征描述。将讨论灌注MRI技术:动态对比增强(DCE)、动态磁敏感对比增强(DSC)和动脉自旋标记(ASL),随后讨论用于分析脑微循环的不太成熟的成像策略:体素内不相干运动(IVIM)、血管空间占据(VASO)、稳态磁敏感对比(SSC)、血管大小成像、基于SAGE的DSC、相位对比血流(PC)、定量磁敏感成像(QSM)和定量血氧水平依赖(qBOLD)。我们将强调每种策略的优缺点,特别是在啮齿动物大脑高场MRI中的应用。