Joiner M C, Field S B
Gray Laboratory, Mount Vernon Hospital, Northwood, Middlesex, U.K.
Radiother Oncol. 1988 Jun;12(2):153-66. doi: 10.1016/0167-8140(88)90169-7.
Acute skin reactions on mouse feet were used to measure the effect of 62 MeV p-Be neutrons from the cyclotron at Clatterbridge, U.K. The results were compared with the response to 16 MeV d-Be neutrons from the cyclotron at Hammersmith, 4 MeV d-Be neutrons from the van de Graaff accelerator at the Gray Laboratory, and 250 kVp X-rays. Up to 16 equal radiation fractions were given alone, or 16 fractions followed by "top-up" doses of 4 MeV d-Be neutrons to study the effect of neutron doses less than 1 Gy per fraction. For equivalent skin reactions, 9-16% more dose (total neutron + gamma) was needed with p(62)-Be neutrons compared with d(16)-Be neutrons. This did not vary significantly between 1 and 16 fractions. The top-up studies indicated that this figure might rise to approximately 14-32% at very low doses of neutrons, the value depending on the method of analysis of the data. The data indicate that the "standard" clinical protocol of 1.47 Gy per fraction (N + gamma dose) in 12 fractions given at Hammersmith with d(16)-Be neutrons would correspond to a dose of 1.64 Gy per fraction (N + gamma) at Clatterbridge using a similar regime of p(62)-Be neutrons. d(4)-Be neutrons were more effective than d(16)-Be neutrons by a factor of 1.6 over the whole range of dose per fraction studied (0.05-14.5 Gy per fraction of d(4)-Be neutrons). Relative to X-rays, the RBE for p(62)-Be neutrons was 1.6 +/- 0.02 for a single X-ray dose of 30 Gy, rising to 2.9 +/- 0.04 for an X-ray dose per fraction of 4.6 Gy given 16 times. The full-course fractionation data and the top-up data together indicate an extrapolated limiting RBE at vanishingly small doses per fraction of 4.2-4.8 depending on the method of analysis. The X-ray data were well-fitted by a linear-quadratic (LQ) model of dose-fractionation, with alpha/beta = 8.6 +/- 1.5 Gy. The LQ model also provides a fairly good description of the neutron responses, alpha/beta being large (greater than 24) reflecting predominantly linear underlying dose-responses for all the neutron beams. This in turn reflects the small variation observed in the relative effectiveness between the 3 neutron beams with changes in dose per fraction.
利用小鼠足部的急性皮肤反应来测量英国克拉特布里奇回旋加速器产生的62兆电子伏p-Be中子的效应。将结果与哈默史密斯回旋加速器产生的16兆电子伏d-Be中子、格雷实验室范德格拉夫加速器产生的4兆电子伏d-Be中子以及250千伏p X射线的反应进行比较。单独给予高达16个相等的辐射分次,或给予16个分次后再给予4兆电子伏d-Be中子的“补充”剂量,以研究每分次小于1戈瑞的中子剂量的效应。对于等效的皮肤反应,与d(16)-Be中子相比,p(62)-Be中子需要多9%-16%的剂量(总中子+γ剂量)。这在1至16个分次之间没有显著变化。补充研究表明,在非常低的中子剂量下,这个数字可能会上升到约14%-32%,具体数值取决于数据分析方法。数据表明,哈默史密斯使用d(16)-Be中子在12个分次中每次给予1.47戈瑞(N+γ剂量)的“标准”临床方案,在克拉特布里奇使用类似的p(62)-Be中子方案时,相当于每次给予1.64戈瑞(N+γ)的剂量。在研究的每分次剂量的整个范围内(4兆电子伏d-Be中子每分次0.05-14.5戈瑞),d(4)-Be中子比d(16)-Be中子有效1.6倍。相对于X射线,对于单次30戈瑞的X射线剂量,p(62)-Be中子的相对生物效应(RBE)为1.6±0.02,对于16次给予的每次4.6戈瑞的X射线剂量,RBE上升至2.9±0.04。全疗程分次数据和补充数据共同表明,根据分析方法,在每分次极小剂量下外推的极限RBE为4.2-4.8。X射线数据很好地符合剂量分次的线性二次(LQ)模型,α/β=8.6±1.5戈瑞。LQ模型也对中子反应提供了相当好的描述,α/β很大(大于24),这主要反映了所有中子束的线性潜在剂量反应。这反过来又反映了随着每分次剂量的变化,在3种中子束之间观察到的相对有效性的微小变化。