Suppr超能文献

CosG:一种用于事实验证的基于图的对比学习方法。

CosG: A Graph-Based Contrastive Learning Method for Fact Verification.

作者信息

Chen Chonghao, Zheng Jianming, Chen Honghui

机构信息

Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha 410073, China.

出版信息

Sensors (Basel). 2021 May 16;21(10):3471. doi: 10.3390/s21103471.

Abstract

Fact verification aims to verify the authenticity of a given claim based on the retrieved evidence from Wikipedia articles. Existing works mainly focus on enhancing the semantic representation of evidence, e.g., introducing the graph structure to model the evidence relation. However, previous methods can't well distinguish semantic-similar claims and evidences with distinct authenticity labels. In addition, the performances of graph-based models are limited by the over-smoothing problem of graph neural networks. To this end, we propose a graph-based contrastive learning method for fact verification abbreviated as CosG, which introduces a contrastive label-supervised task to help the encoder learn the discriminative representations for different-label claim-evidence pairs, as well as an unsupervised graph-contrast task, to alleviate the unique node features loss in the graph propagation. We conduct experiments on FEVER, a large benchmark dataset for fact verification. Experimental results show the superiority of our proposal against comparable baselines, especially for the claims that need multiple-evidences to verify. In addition, CosG presents better model robustness on the low-resource scenario.

摘要

事实验证旨在根据从维基百科文章中检索到的证据来验证给定主张的真实性。现有工作主要集中在增强证据的语义表示,例如,引入图结构来建模证据关系。然而,先前的方法无法很好地区分具有不同真实性标签的语义相似的主张和证据。此外,基于图的模型的性能受到图神经网络过平滑问题的限制。为此,我们提出了一种用于事实验证的基于图的对比学习方法,简称为CosG,它引入了一个对比标签监督任务来帮助编码器学习不同标签主张 - 证据对的判别表示,以及一个无监督图对比任务,以减轻图传播中独特节点特征的损失。我们在FEVER(一个用于事实验证的大型基准数据集)上进行实验。实验结果表明我们的方法相对于可比基线的优越性,特别是对于需要多个证据来验证的主张。此外,CosG在低资源场景下表现出更好的模型鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba1a/8156189/6d970faf8d6a/sensors-21-03471-g001.jpg

相似文献

2
Local structure-aware graph contrastive representation learning.基于局部结构感知的图对比表示学习。
Neural Netw. 2024 Apr;172:106083. doi: 10.1016/j.neunet.2023.12.037. Epub 2023 Dec 27.
3
Unsupervised graph-level representation learning with hierarchical contrasts.基于分层对比的无监督图级表示学习
Neural Netw. 2023 Jan;158:359-368. doi: 10.1016/j.neunet.2022.11.019. Epub 2022 Nov 26.
4
Contrastive learning of graphs under label noise.图在标签噪声下的对比学习。
Neural Netw. 2024 Apr;172:106113. doi: 10.1016/j.neunet.2024.106113. Epub 2024 Jan 6.
5
Dual Contrastive Learning Network for Graph Clustering.用于图聚类的双对比学习网络。
IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):10846-10856. doi: 10.1109/TNNLS.2023.3244397. Epub 2024 Aug 5.
6
Graph Clustering with High-Order Contrastive Learning.基于高阶对比学习的图聚类
Entropy (Basel). 2023 Oct 10;25(10):1432. doi: 10.3390/e25101432.
7
Self-supervised contrastive graph representation with node and graph augmentation.自监督对比图表示与节点和图增强。
Neural Netw. 2023 Oct;167:223-232. doi: 10.1016/j.neunet.2023.08.039. Epub 2023 Aug 24.

本文引用的文献

1
Computational Fact Checking from Knowledge Networks.基于知识网络的计算事实核查
PLoS One. 2015 Jun 17;10(6):e0128193. doi: 10.1371/journal.pone.0128193. eCollection 2015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验