Suppr超能文献

一种用于无创预测胰腺神经内分泌肿瘤肿瘤分级的[68Ga]镓-多柔比星PET/CT影像组学模型。

A [68Ga]Ga-DOTANOC PET/CT Radiomic Model for Non-Invasive Prediction of Tumour Grade in Pancreatic Neuroendocrine Tumours.

作者信息

Bevilacqua Alessandro, Calabrò Diletta, Malavasi Silvia, Ricci Claudio, Casadei Riccardo, Campana Davide, Baiocco Serena, Fanti Stefano, Ambrosini Valentina

机构信息

Advanced Research Center for Electronic Systems (ARCES), University of Bologna, I-40125 Bologna, Italy.

Department of Computer Science and Engineering (DISI), University of Bologna, I-40136 Bologna, Italy.

出版信息

Diagnostics (Basel). 2021 May 12;11(5):870. doi: 10.3390/diagnostics11050870.

Abstract

Predicting grade 1 (G1) and 2 (G2) primary pancreatic neuroendocrine tumour (panNET) is crucial to foresee panNET clinical behaviour. Fifty-one patients with G1-G2 primary panNET demonstrated by pre-surgical [68Ga]Ga-DOTANOC PET/CT and diagnostic conventional imaging were grouped according to the tumour grade assessment method: histology on the whole excised primary lesion (HS) or biopsy (BS). First-order and second-order radiomic features (RFs) were computed from SUV maps for the whole tumour volume on HS. The RFs showing the lowest -values and the highest area under the curve (AUC) were selected. Three radiomic models were assessed: A (trained on HS, validated on BS), B (trained on BS, validated on HS), and C (using the cross-validation on the whole dataset). The second-order normalized homogeneity and entropy was the most effective RFs couple predicting G2 and G1. The best performance was achieved by model A (test AUC = 0.90, sensitivity = 0.88, specificity = 0.89), followed by model C (median test AUC = 0.87, sensitivity = 0.83, specificity = 0.82). Model B performed worse. Using HS to train a radiomic model leads to the best prediction, although a "hybrid" (HS+BS) population performs better than biopsy-only. The non-invasive prediction of panNET grading may be especially useful in lesions not amenable to biopsy while [68Ga]Ga-DOTANOC heterogeneity might recommend FDG PET/CT.

摘要

预测1级(G1)和2级(G2)原发性胰腺神经内分泌肿瘤(panNET)对于预见panNET的临床行为至关重要。51例经术前[68Ga]镓-多他环素PET/CT和诊断性传统成像证实为G1-G2原发性panNET的患者,根据肿瘤分级评估方法进行分组:完整切除的原发性病变的组织学检查(HS)或活检(BS)。从HS上整个肿瘤体积的SUV图中计算出一阶和二阶放射组学特征(RFs)。选择显示最低值和最高曲线下面积(AUC)的RFs。评估了三种放射组学模型:A(在HS上训练,在BS上验证)、B(在BS上训练,在HS上验证)和C(对整个数据集使用交叉验证)。二阶归一化均匀性和熵是预测G2和G1最有效的RFs组合。模型A表现最佳(测试AUC = 0.90,敏感性 = 0.88,特异性 = 0.89),其次是模型C(中位测试AUC = 0.87,敏感性 = 0.83,特异性 = 0.82)。模型B表现较差。使用HS训练放射组学模型可获得最佳预测,尽管“混合”(HS+BS)人群的表现优于仅活检人群。panNET分级的非侵入性预测在不适合活检的病变中可能特别有用,而[68Ga]镓-多他环素的异质性可能推荐FDG PET/CT。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9833/8150289/5f97d6b1a101/diagnostics-11-00870-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验