Suppr超能文献

利用多输出回归卷积神经网络估算猪体重和体型:一种快速且全自动的方法。

Pig Weight and Body Size Estimation Using a Multiple Output Regression Convolutional Neural Network: A Fast and Fully Automatic Method.

机构信息

College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China.

Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.

出版信息

Sensors (Basel). 2021 May 6;21(9):3218. doi: 10.3390/s21093218.

Abstract

Pig weight and body size are important indicators for producers. Due to the increasing scale of pig farms, it is increasingly difficult for farmers to quickly and automatically obtain pig weight and body size. Due to this problem, we focused on a multiple output regression convolutional neural network (CNN) to estimate pig weight and body size. DenseNet201, ResNet152 V2, Xception and MobileNet V2 were modified into multiple output regression CNNs and trained on modeling data. By comparing the estimated performance of each model on test data, modified Xception was selected as the optimal estimation model. Based on pig height, body shape, and contour, the mean absolute error (MAE) of the model to estimate body weight (BW), shoulder width (SW), shoulder height (SH), hip width (HW), hip width (HH), and body length (BL) were 1.16 kg, 0.33 cm, 1.23 cm, 0.38 cm, 0.66 cm, and 0.75 cm, respectively. The coefficient of determination (R) value between the estimated and measured results was in the range of 0.9879-0.9973. Combined with the LabVIEW software development platform, this method can estimate pig weight and body size accurately, quickly, and automatically. This work contributes to the automatic management of pig farms.

摘要

猪的体重和体型是生产者的重要指标。由于养猪场规模的不断扩大,农民越来越难以快速、自动地获得猪的体重和体型数据。针对这一问题,我们专注于研究一种多输出回归卷积神经网络(CNN)来估计猪的体重和体型。将 DenseNet201、ResNet152 V2、Xception 和 MobileNet V2 分别修改为多输出回归 CNN,并在建模数据上进行训练。通过比较每个模型在测试数据上的估计性能,选择修改后的 Xception 作为最佳估计模型。该模型基于猪的身高、体型和轮廓,估计体重(BW)、肩宽(SW)、肩高(SH)、髋宽(HW)、髋高(HH)和体长(BL)的平均绝对误差(MAE)分别为 1.16 千克、0.33 厘米、1.23 厘米、0.38 厘米、0.66 厘米和 0.75 厘米。估计值与实测值之间的决定系数(R)值在 0.9879-0.9973 之间。结合 LabVIEW 软件开发平台,该方法可以实现对猪体重和体型的精确、快速和自动估计。本研究工作有助于实现养猪场的自动化管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f68/8124602/2359bcec8d53/sensors-21-03218-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验