College of Engineering, Nanjing Agricultural University, Nanjing 210031, China.
Key Laboratory of Breeding Equipment, Ministry of Agriculture and Rural Affairs, Nanjing 210031, China.
Sensors (Basel). 2023 Sep 7;23(18):7730. doi: 10.3390/s23187730.
The measurement of pig weight holds significant importance for producers as it plays a crucial role in managing pig growth, health, and marketing, thereby facilitating informed decisions regarding scientific feeding practices. On one hand, the conventional manual weighing approach is characterized by inefficiency and time consumption. On the other hand, it has the potential to induce heightened stress levels in pigs. This research introduces a hybrid 3D point cloud denoising approach for precise pig weight estimation. By integrating statistical filtering and DBSCAN clustering techniques, we mitigate weight estimation bias and overcome limitations in feature extraction. The convex hull technique refines the dataset to the pig's back, while voxel down-sampling enhances real-time efficiency. Our model integrates pig back parameters with a convolutional neural network (CNN) for accurate weight estimation. Experimental analysis indicates that the mean absolute error (MAE), mean absolute percent error (MAPE), and root mean square error (RMSE) of the weight estimation model proposed in this research are 12.45 kg, 5.36%, and 12.91 kg, respectively. In contrast to the currently available weight estimation methods based on 2D and 3D techniques, the suggested approach offers the advantages of simplified equipment configuration and reduced data processing complexity. These benefits are achieved without compromising the accuracy of weight estimation. Consequently, the proposed method presents an effective monitoring solution for precise pig feeding management, leading to reduced human resource losses and improved welfare in pig breeding.
猪体重的测量对生产者来说非常重要,因为它在管理猪的生长、健康和销售方面起着至关重要的作用,从而有助于就科学喂养实践做出明智的决策。一方面,传统的手动称重方法效率低下且耗时。另一方面,它有可能增加猪的压力水平。本研究提出了一种混合 3D 点云去噪方法,用于精确估计猪的体重。通过整合统计滤波和 DBSCAN 聚类技术,我们减轻了体重估计的偏差,并克服了特征提取的局限性。凸壳技术将数据集细化到猪的背部,而体素下采样则提高了实时效率。我们的模型将猪背参数与卷积神经网络(CNN)集成在一起,以实现准确的体重估计。实验分析表明,本研究提出的体重估计模型的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别为 12.45 千克、5.36%和 12.91 千克。与目前基于 2D 和 3D 技术的体重估计方法相比,所提出的方法具有简化设备配置和降低数据处理复杂性的优点。在不影响体重估计准确性的情况下实现了这些优势。因此,该方法为精确的猪饲养管理提供了有效的监测解决方案,减少了人力资源的损失,并提高了猪养殖的福利。