Suppr超能文献

一种基于深度学习的无约束猪体重估计模型。

A Pig Mass Estimation Model Based on Deep Learning without Constraint.

作者信息

Liu Junbin, Xiao Deqin, Liu Youfu, Huang Yigui

机构信息

College of Mathematics Informatics, South China Agricultural University, Guangzhou 510642, China.

出版信息

Animals (Basel). 2023 Apr 17;13(8):1376. doi: 10.3390/ani13081376.

Abstract

The body mass of pigs is an essential indicator of their growth and health. Lately, contactless pig body mass estimation methods based on computer vision technology have gained attention thanks to their potential to improve animal welfare and ensure breeders' safety. Nonetheless, current methods require pigs to be restrained in a confinement pen, and no study has been conducted in an unconstrained environment. In this study, we develop a pig mass estimation model based on deep learning, capable of estimating body mass without constraints. Our model comprises a Mask R-CNN-based pig instance segmentation algorithm, a Keypoint R-CNN-based pig keypoint detection algorithm and an improved ResNet-based pig mass estimation algorithm that includes multi-branch convolution, depthwise convolution, and an inverted bottleneck to improve accuracy. We constructed a dataset for this study using images and body mass data from 117 pigs. Our model achieved an RMSE of 3.52 kg on the test set, which is lower than that of the pig body mass estimation algorithm with ResNet and ConvNeXt as the backbone network, and the average estimation speed was 0.339 s·frame Our model can evaluate the body quality of pigs in real-time to provide data support for grading and adjusting breeding plans, and has broad application prospects.

摘要

猪的体重是其生长和健康的重要指标。最近,基于计算机视觉技术的非接触式猪体重估计方法因其在改善动物福利和确保饲养员安全方面的潜力而受到关注。尽管如此,目前的方法需要将猪限制在围栏内,且尚未在无约束环境中进行研究。在本研究中,我们开发了一种基于深度学习的猪体重估计模型,能够在无约束条件下估计体重。我们的模型包括基于Mask R-CNN的猪实例分割算法、基于Keypoint R-CNN的猪关键点检测算法以及基于改进ResNet的猪体重估计算法,该算法包括多分支卷积、深度卷积和倒置瓶颈以提高准确性。我们使用117头猪的图像和体重数据构建了本研究的数据集。我们的模型在测试集上的RMSE为3.52 kg,低于以ResNet和ConvNeXt作为骨干网络的猪体重估计算法,平均估计速度为0.339 s·帧。我们的模型可以实时评估猪的身体质量,为分级和调整育种计划提供数据支持,具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc28/10135044/3de3e7996128/animals-13-01376-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验