Suppr超能文献

利用可见-近红外光谱法快速测定矿区周围草原土壤中的低重金属浓度:以内蒙古为例。

Rapid Determination of Low Heavy Metal Concentrations in Grassland Soils around Mining Using Vis-NIR Spectroscopy: A Case Study of Inner Mongolia, China.

机构信息

School of Environment, Northeast Normal University, Changchun 130024, China.

Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China.

出版信息

Sensors (Basel). 2021 May 6;21(9):3220. doi: 10.3390/s21093220.

Abstract

Proximal sensing offers a novel means for determination of the heavy metal concentration in soil, facilitating low cost and rapid analysis over large areas. In this respect, spectral data and model variables play an important role. Thus far, no attempts have been made to estimate soil heavy metal content using continuum-removal (CR), different preprocessing and statistical methods, and different modeling variables. Considering the adsorption and retention of heavy metals in spectrally active constituents in soil, this study proposes a method for determining low heavy metal concentrations in soil using spectral bands associated with soil organic matter (SOM) and visible-near-infrared (Vis-NIR). To rapidly determine the concentration of heavy metals using hyperspectral data, partial least squares regression (PLSR), principal component regression (PCR), and support vector machine regression (SVMR) statistical methods and 16 preprocessing combinations were developed and explored to determine an optimal combination. The results showed that the multiplicative scatter correction and standard normal variate preprocessing methods evaluated with the second derivative spectral transformation method could accurately determine soil Cr and Ni concentrations. The root-mean-square error (RMSE) values of Vis-NIR model combinations with PLSR, PCR, and SVMR were 0.34, 3.42, and 2.15 for Cr, and 0.07, 1.78, and 1.14 for Ni, respectively. Soil Cr and Ni showed strong spectral responses to the Vis-NIR spectral band. The R value of the Vis-NIR-based PLSR model was higher than 0.99, and the RMSE value was 0.07-0.34, suggesting higher stability and accuracy. The results were more accurate for Ni than Cr, and PLSR showed the best performance, followed by SVMR and PCR. This perspective has critical implications for guiding quantitative biogeochemical analysis using proximal sensing data.

摘要

近地感应为确定土壤中重金属浓度提供了一种新方法,有利于在大面积范围内进行低成本、快速分析。在这方面,光谱数据和模型变量起着重要作用。迄今为止,尚未尝试使用连续体去除 (CR)、不同的预处理和统计方法以及不同的建模变量来估计土壤重金属含量。考虑到重金属在土壤光谱活性成分中的吸附和保留,本研究提出了一种使用与土壤有机质 (SOM) 和可见近红外 (Vis-NIR) 相关的光谱带确定土壤中低重金属浓度的方法。为了使用高光谱数据快速确定重金属浓度,开发并探索了偏最小二乘回归 (PLSR)、主成分回归 (PCR) 和支持向量机回归 (SVMR) 统计方法和 16 种预处理组合,以确定最佳组合。结果表明,用二阶导数光谱变换法评价的乘性散射校正和标准正态变量预处理方法可以准确地确定土壤 Cr 和 Ni 浓度。PLSR、PCR 和 SVMR 的 Vis-NIR 模型组合的均方根误差 (RMSE) 值分别为 Cr 的 0.34、3.42 和 2.15,Ni 的 0.07、1.78 和 1.14。土壤 Cr 和 Ni 对 Vis-NIR 光谱波段有很强的光谱响应。基于 Vis-NIR 的 PLSR 模型的 R 值高于 0.99,RMSE 值为 0.07-0.34,表明稳定性和准确性更高。Ni 的结果比 Cr 更准确,PLSR 表现最好,其次是 SVMR 和 PCR。这一观点对于指导使用近地感应数据进行定量生物地球化学分析具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4252/8124297/8c662bce20dd/sensors-21-03220-g001.jpg

相似文献

3
Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy.
Environ Monit Assess. 2018 Aug 13;190(9):513. doi: 10.1007/s10661-018-6898-6.
4
Assessing heavy metal concentrations in earth-cumulic-orthic-anthrosols soils using Vis-NIR spectroscopy transform coupled with chemometrics.
Spectrochim Acta A Mol Biomol Spectrosc. 2020 Feb 5;226:117639. doi: 10.1016/j.saa.2019.117639. Epub 2019 Oct 9.
5
Prediction of bioaccessible lead in urban and suburban soils with Vis-NIR diffuse reflectance spectroscopy.
Sci Total Environ. 2022 Feb 25;809:151107. doi: 10.1016/j.scitotenv.2021.151107. Epub 2021 Oct 21.
6
Hyperspectral-based Inversion of Heavy Metal Content in the Soil of Coal Mining Areas.
J Environ Qual. 2019 Jan;48(1):57-63. doi: 10.2134/jeq2018.04.0130.
8
Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods.
Spectrochim Acta A Mol Biomol Spectrosc. 2019 Mar 15;211:393-400. doi: 10.1016/j.saa.2018.12.032. Epub 2018 Dec 18.
9
Improved multivariate modeling for soil organic matter content estimation using hyperspectral indexes and characteristic bands.
PLoS One. 2023 Jun 14;18(6):e0286825. doi: 10.1371/journal.pone.0286825. eCollection 2023.
10
Effects of Subsetting by Parent Materials on Prediction of Soil Organic Matter Content in a Hilly Area Using Vis-NIR Spectroscopy.
PLoS One. 2016 Mar 14;11(3):e0151536. doi: 10.1371/journal.pone.0151536. eCollection 2016.

引用本文的文献

本文引用的文献

1
Estimation of Soil Arsenic Content with Hyperspectral Remote Sensing.
Sensors (Basel). 2020 Jul 21;20(14):4056. doi: 10.3390/s20144056.
2
Potentially toxic metal contamination and microbial community analysis in an abandoned Pb and Zn mining waste deposit.
Sci Total Environ. 2019 Jul 20;675:367-379. doi: 10.1016/j.scitotenv.2019.04.223. Epub 2019 Apr 17.
3
Predicting cadmium concentration in soils using laboratory and field reflectance spectroscopy.
Sci Total Environ. 2019 Feb 10;650(Pt 1):321-334. doi: 10.1016/j.scitotenv.2018.08.442. Epub 2018 Sep 1.
5
Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy.
Environ Pollut. 2015 Nov;206:217-26. doi: 10.1016/j.envpol.2015.07.009. Epub 2015 Jul 16.
7
Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils.
Int J Phytoremediation. 2013;15(5):405-26. doi: 10.1080/15226514.2012.702805.
8
[Prediction of As in soil with reflectance spectroscopy].
Guang Pu Xue Yu Guang Pu Fen Xi. 2011 Jan;31(1):173-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验