Pérez-Madrid Agustin, Santamaría-Holek Ivan
Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
UMDI-Facultad de Ciencias, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro 76230, Mexico.
Entropy (Basel). 2021 May 8;23(5):579. doi: 10.3390/e23050579.
We present a novel theoretical approach to the problem of light energy conversion in thermostated semiconductor junctions. Using the classical model of a two-level atom, we deduced formulas for the spectral response and the quantum efficiency in terms of the input photons' non-zero chemical potential. We also calculated the spectral entropy production and the global efficiency parameter in the thermodynamic limit. The heat transferred to the thermostat results in a dissipative loss that appreciably controls the spectral quantities' behavior and, therefore, the cell's performance. The application of the obtained formulas to data extracted from photovoltaic cells enabled us to accurately interpolate experimental data for the spectral response and the quantum efficiency of cells based on Si-, GaAs, and CdTe, among others.
我们提出了一种全新的理论方法来解决恒温半导体结中的光能转换问题。利用两能级原子的经典模型,我们推导了关于输入光子非零化学势的光谱响应和量子效率公式。我们还计算了热力学极限下的光谱熵产生和全局效率参数。传递到恒温器的热量会导致耗散损失,这显著控制了光谱量的行为,进而影响电池的性能。将所得公式应用于从光伏电池提取的数据,使我们能够准确地对基于硅、砷化镓和碲化镉等材料的电池的光谱响应和量子效率的实验数据进行插值。