Suppr超能文献

基于可学习深度度量的零样本图像分类

Zero-Shot Image Classification Based on a Learnable Deep Metric.

作者信息

Liu Jingyi, Shi Caijuan, Tu Dongjing, Shi Ze, Liu Yazhi

机构信息

College of Information Engineering, North China University of Science and Technology, Tangshan 063210, China.

出版信息

Sensors (Basel). 2021 May 7;21(9):3241. doi: 10.3390/s21093241.

Abstract

The supervised model based on deep learning has made great achievements in the field of image classification after training with a large number of labeled samples. However, there are many categories without or only with a few labeled training samples in practice, and some categories even have no training samples at all. The proposed zero-shot learning greatly reduces the dependence on labeled training samples for image classification models. Nevertheless, there are limitations in learning the similarity of visual features and semantic features with a predefined fixed metric (e.g., as Euclidean distance), as well as the problem of semantic gap in the mapping process. To address these problems, a new zero-shot image classification method based on an end-to-end learnable deep metric is proposed in this paper. First, the common space embedding is adopted to map the visual features and semantic features into a common space. Second, an end-to-end learnable deep metric, that is, the relation network is utilized to learn the similarity of visual features and semantic features. Finally, the invisible images are classified, according to the similarity score. Extensive experiments are carried out on four datasets and the results indicate the effectiveness of the proposed method.

摘要

基于深度学习的监督模型在使用大量带标签样本进行训练后,在图像分类领域取得了巨大成就。然而,在实际应用中,存在许多没有或只有少量带标签训练样本的类别,甚至有些类别根本没有训练样本。所提出的零样本学习极大地降低了图像分类模型对带标签训练样本的依赖。尽管如此,使用预定义的固定度量(例如欧几里得距离)来学习视觉特征和语义特征的相似性存在局限性,并且在映射过程中存在语义鸿沟问题。为了解决这些问题,本文提出了一种基于端到端可学习深度度量的新型零样本图像分类方法。首先,采用公共空间嵌入将视觉特征和语义特征映射到一个公共空间。其次,利用端到端可学习深度度量,即关系网络来学习视觉特征和语义特征的相似性。最后,根据相似性得分对不可见图像进行分类。在四个数据集上进行了大量实验,结果表明了所提方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4792/8124744/a6e98909b670/sensors-21-03241-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验