Suppr超能文献

一种用于具有未知重尾测量噪声的多目标跟踪的鲁棒滑模概率假设密度滤波器。

A Robust SMC-PHD Filter for Multi-Target Tracking with Unknown Heavy-Tailed Measurement Noise.

作者信息

Gong Yang, Cui Chen

机构信息

Institute of Electronic Countermeasure, National University of Defense Technology, Hefei 230037, China.

出版信息

Sensors (Basel). 2021 May 22;21(11):3611. doi: 10.3390/s21113611.

Abstract

In multi-target tracking, the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter is a practical algorithm. Influenced by outliers under unknown heavy-tailed measurement noise, the SMC-PHD filter suffers severe performance degradation. In this paper, a robust SMC-PHD (RSMC-PHD) filter is proposed. In the proposed filter, Student-t distribution is introduced to describe the unknown heavy-tailed measurement noise where the degrees of freedom (DOF) and the scale matrix of the Student-t distribution are respectively modeled as a Gamma distribution and an inverse Wishart distribution. Furthermore, the variational Bayesian (VB) technique is employed to infer the unknown DOF and scale matrix parameters while the recursion estimation framework of the RSMC-PHD filter is derived. In addition, considering that the introduced Student- t distribution might lead to an overestimation of the target number, a strategy is applied to modify the updated weight of each particle. Simulation results demonstrate that the proposed filter is effective with unknown heavy-tailed measurement noise.

摘要

在多目标跟踪中,序贯蒙特卡罗概率假设密度(SMC-PHD)滤波器是一种实用算法。受未知重尾测量噪声下异常值的影响,SMC-PHD滤波器的性能会严重下降。本文提出了一种鲁棒的SMC-PHD(RSMC-PHD)滤波器。在所提出的滤波器中,引入了学生t分布来描述未知的重尾测量噪声,其中学生t分布的自由度(DOF)和尺度矩阵分别被建模为伽马分布和逆威沙特分布。此外,采用变分贝叶斯(VB)技术来推断未知的自由度和尺度矩阵参数,同时推导了RSMC-PHD滤波器的递归估计框架。此外,考虑到引入的学生t分布可能导致目标数量的高估,应用了一种策略来修改每个粒子的更新权重。仿真结果表明,所提出的滤波器在未知重尾测量噪声情况下是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3618/8196810/3207b0233f3a/sensors-21-03611-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验