Franco Pamela, Huebschle Irene, Simon-Gabriel Carl Philipp, Dacca Karam, Schnell Oliver, Beck Juergen, Mast Hansjoerg, Urbach Horst, Wuertemberger Urs, Prinz Marco, Hosp Jonas A, Delev Daniel, Mader Irina, Heiland Dieter Henrik
Department of Neurosurgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany.
Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
Cancers (Basel). 2021 May 17;13(10):2417. doi: 10.3390/cancers13102417.
Proton magnetic resonance spectroscopy (H-MRS) delivers information about the non-invasive metabolic landscape of brain pathologies. H-MRS is used in clinical setting in addition to MRI for diagnostic, prognostic and treatment response assessments, but the use of this radiological tool is not entirely widespread. The importance of developing automated analysis tools for H-MRS lies in the possibility of a straightforward application and simplified interpretation of metabolic and genetic data that allow for incorporation into the daily practice of a broad audience. Here, we report a prospective clinical imaging trial (DRKS00019855) which aimed to develop a novel MR-spectroscopy-based algorithm for in-depth characterization of brain lesions and prediction of molecular traits. Dimensional reduction of metabolic profiles demonstrated distinct patterns throughout pathologies. We combined a deep autoencoder and multi-layer linear discriminant models for voxel-wise prediction of the molecular profile based on MRS imaging. Molecular subtypes were predicted by an overall accuracy of 91.2% using a classifier score. Our study indicates a first step into combining the metabolic and molecular traits of lesions for advancing the pre-operative diagnostic workup of brain tumors and improve personalized tumor treatment.
质子磁共振波谱(H-MRS)可提供有关脑部病变无创代谢情况的信息。除了MRI之外,H-MRS还用于临床环境中进行诊断、预后和治疗反应评估,但这种放射学工具的使用并不十分广泛。开发H-MRS自动化分析工具的重要性在于有可能直接应用并简化代谢和遗传数据的解释,从而将其纳入广大受众的日常实践中。在此,我们报告了一项前瞻性临床成像试验(DRKS00019855),其目的是开发一种基于磁共振波谱的新型算法,用于深入表征脑病变并预测分子特征。代谢谱的降维显示了整个病变过程中的不同模式。我们结合了深度自动编码器和多层线性判别模型,用于基于MRS成像对分子谱进行逐体素预测。使用分类器评分预测分子亚型的总体准确率为91.2%。我们的研究表明,将病变的代谢和分子特征相结合是推进脑肿瘤术前诊断检查和改善个性化肿瘤治疗的第一步。