Suppr超能文献

通过调节氨基酸代谢和磷利用效率提高植物对低磷胁迫的耐受性。 需注意,原文中“of”后面缺少具体对象,这里补充“植物”使句子完整通顺,符合正常语义逻辑。

Increases the Tolerance of to Low-P Stress by Modulating Amino Acids Metabolism and Phosphorus Utilization Efficiency.

作者信息

Liu Yinglong, Hou Wenpeng, Jin Jie, Christensen Michael J, Gu Lijun, Cheng Chen, Wang Jianfeng

机构信息

State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.

Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.

出版信息

J Fungi (Basel). 2021 May 17;7(5):390. doi: 10.3390/jof7050390.

Abstract

In the long-term evolutionary process, and seed-borne endophytic fungi, , formed a mutually beneficial symbiosis relationship, and has an important biological role in improving the tolerance of host grasses to abiotic stress. In this work, we first assessed the effects of on dry weight, the content of C, N, P and metal ions, and metabolic pathway of amino acids, and phosphorus utilization efficiency (PUE) of at low P stress. Our results showed that the dry weights, the content of alanine, arginine, aspartic acid, glycine, glutamine, glutamic acid, L-asparagine, lysine, phenylalanine, proline, serine, threonine, and tryptophan were higher in leaves of -infected (E+) than -uninfected (E-) at low P stress. Further, increased C content of roots compared to the root of E- plant at 0.01 mM P and 0.5 mM P; increased K content of leaves compared to the leaf of E- plant at 0.01 mM P and 0.5 mM P. reduced Ca content of roots compared to the root of E- plant at 0.01 mM P and 0.5 mM P; reduced the content of Mg and Fe in leaves compared to the leaf of E- plant at 0.01 mM P and 0.5 mM P. In addition, at low P stress, most probably influenced aspartate and glutamate metabolism; valine, leucine, and isoleucine biosynthesis in leaves; and arginine and proline metabolism; alanine, aspartate, and glutamate metabolism in roots. also affected the content of organic acid and stress-related metabolites at low P stress. In conclusion, improves growth at low P stress by regulating the metabolic pathway of amino acids, amino acids content, organic acid content, and increasing PUE.

摘要

在长期的进化过程中,[植物名称]与种子携带的内生真菌[真菌名称]形成了互利共生关系,并且[真菌名称]在提高宿主草对非生物胁迫的耐受性方面具有重要的生物学作用。在这项工作中,我们首先评估了[真菌名称]对低磷胁迫下[植物名称]的干重、碳、氮、磷和金属离子含量、氨基酸代谢途径以及磷利用效率(PUE)的影响。我们的结果表明,在低磷胁迫下,感染[真菌名称](E+)的[植物名称]叶片中的干重、丙氨酸、精氨酸、天冬氨酸、甘氨酸、谷氨酰胺、谷氨酸、L-天冬酰胺、赖氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸和色氨酸的含量高于未感染[真菌名称](E-)的[植物名称]。此外,在0.01 mM磷和0.5 mM磷水平下,与E-植株的根相比,[真菌名称]增加了[植物名称]根中的碳含量;在0.01 mM磷和0.5 mM磷水平下,与E-植株的叶相比,[真菌名称]增加了[植物名称]叶中的钾含量。在0.01 mM磷和0.5 mM磷水平下,与E-植株的根相比,[真菌名称]降低了[植物名称]根中的钙含量;在0.01 mM磷和0.5 mM磷水平下,与E-植株的叶相比,[真菌名称]降低了[植物名称]叶中的镁和铁含量。此外,在低磷胁迫下,[真菌名称]很可能影响了叶片中天冬氨酸和谷氨酸代谢;缬氨酸、亮氨酸和异亮氨酸生物合成;以及根中的精氨酸和脯氨酸代谢;丙氨酸、天冬氨酸和谷氨酸代谢。[真菌名称]还影响了低磷胁迫下有机酸和胁迫相关代谢物的含量。总之,[真菌名称]通过调节氨基酸代谢途径、氨基酸含量、有机酸含量并提高磷利用效率来促进低磷胁迫下[植物名称]的生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ad/8156409/1a8f210edd0b/jof-07-00390-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验