Suppr超能文献

用于水下声学通信的异步啁啾斜率键控

Asynchronous Chirp Slope Keying for Underwater Acoustic Communication.

作者信息

Schott Dominik Jan, Gabbrielli Andrea, Xiong Wenxin, Fischer Georg, Höflinger Fabian, Wendeberg Johannes, Schindelhauer Christian, Rupitsch Stefan Johann

机构信息

Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany.

Department of Computer Science (IIF), University of Freiburg, 79110 Freiburg, Germany.

出版信息

Sensors (Basel). 2021 May 10;21(9):3282. doi: 10.3390/s21093282.

Abstract

We propose an asynchronous acoustic chirp slope keying to map short bit sequences on single or multiple bands without preamble or error correction coding on the physical layer. We introduce a symbol detection scheme in the demodulator that uses the superposed matched filter results of up and down chirp references to estimate the symbol timing, which removes the requirement of a preamble for symbol synchronization. Details of the implementation are disclosed and discussed, and the performance is verified in a pool measurement on laboratory scale, as well as the simulation for a channel containing Rayleigh fading and Additive White Gaussian Noise. For time-bandwidth products (TB) of 50 in single band mode, a raw data rate of 100 bit/s is simulated to achieve bit error rates (BER) below 0.001 for signal-to-noise ratios above -6 dB. In dual-band mode, for TB of 25 and a data rate of 200 bit/s, the same bit error level was achieved for signal-to-noise ratios above 0 dB. The simulated packet error rates (PER) follow the general behavior of the BER, but with a higher error probability, which increases with the length of bits in each packet.

摘要

我们提出一种异步声学啁啾斜率键控方法,用于在不使用物理层前导码或纠错编码的情况下,将短比特序列映射到单频段或多频段上。我们在解调器中引入一种符号检测方案,该方案利用上下啁啾参考的叠加匹配滤波器结果来估计符号定时,从而消除了符号同步对前导码的要求。文中公开并讨论了实现细节,并在实验室规模的水池测量中验证了其性能,同时还对包含瑞利衰落和加性高斯白噪声的信道进行了仿真。在单频段模式下,当时宽带宽积(TB)为50时,模拟得到原始数据速率为100比特/秒,对于高于-6 dB的信噪比,误码率(BER)低于0.001。在双频段模式下,对于TB为25且数据速率为200比特/秒的情况,对于高于0 dB的信噪比,实现了相同的误码水平。模拟得到的分组误码率(PER)遵循BER的一般趋势,但具有更高的错误概率,且该概率随着每个分组中比特长度的增加而增大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f8d/8126164/48708d6d9d4f/sensors-21-03282-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验