Suppr超能文献

具备运动能力的紧凑型形状变形张拉整体机器人。

Compact Shape Morphing Tensegrity Robots Capable of Locomotion.

作者信息

Rhodes Tyler, Gotberg Clayton, Vikas Vishesh

机构信息

Agile Robotics Lab (ARL), Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL, United States.

出版信息

Front Robot AI. 2019 Nov 1;6:111. doi: 10.3389/frobt.2019.00111. eCollection 2019.

Abstract

Robustness, compactness, and portability of tensegrity robots make them suitable candidates for locomotion on unknown terrains. Despite these advantages, challenges remain relating to ease of fabrication, shape morphing (packing-unpacking), and locomotion capabilities. The paper introduces a design methodology for fabricating tensegrity robots of varying morphologies with modular components. The design methodology utilizes perforated links, coplanar (2D) alignment of components and individual cable tensioning to achieve a 3D tensegrity structure. These techniques are utilized to fabricate prism (three-link) tensegrity structures, followed by tensegrity robots in icosahedron (six-link), and shpericon (curved two-link) formation. The methodology is used to explore different robot morphologies that attempt to minimize structural complexity (number of elements) while facilitating smooth locomotion (impact between robot and surface). Locomotion strategies for such robots involve altering the position of center-of-mass (referred to as internal mass shifting) to induce "tip-over." As an example, a sphericon formation comprising of two orthogonally placed circular arcs with conincident center illustrates smooth locomotion along a line (one degree of freedom). The design of curved links of tensegrity mechanisms facilitates continuous change of the point of contact (along the curve) that results from the tip-over. This contrasts to the sudden and piece-wise continuous change for the case of robots with traditional straight links which generate impulse reaction forces during locomotion. The two resulting robots-the Icosahedron and the Sphericon Tensegrity Robots-display shape morphing (packing-unpacking) capabilities and achieve locomotion through internal mass-shifting. The presented static equilibrium analysis of sphericon with mass is the first step in the direction of dynamic locomotion control of these curved link robots.

摘要

张拉整体机器人的坚固性、紧凑性和便携性使其成为在未知地形上移动的合适选择。尽管有这些优点,但在制造简易性、形状变形(打包- unpacking)和移动能力方面仍存在挑战。本文介绍了一种使用模块化组件制造不同形态张拉整体机器人的设计方法。该设计方法利用穿孔连杆、组件的共面(二维)对齐和单独的电缆张紧来实现三维张拉整体结构。这些技术被用于制造棱柱(三连杆)张拉整体结构,随后是二十面体(六连杆)和球形圆锥体(弯曲双连杆)形式的张拉整体机器人。该方法用于探索不同的机器人形态,这些形态试图在促进平稳移动(机器人与表面之间的碰撞)的同时最小化结构复杂性(元素数量)。此类机器人的移动策略包括改变质心位置(称为内部质量转移)以引发“翻倒”。例如,由两个正交放置且圆心重合的圆弧组成的球形圆锥体形式展示了沿直线(一个自由度)的平稳移动。张拉整体机构的弯曲连杆设计有助于因翻倒而导致的接触点(沿曲线)的连续变化。这与传统直连杆机器人在移动过程中产生脉冲反作用力时突然且分段连续变化的情况形成对比。由此产生的两种机器人——二十面体和球形圆锥体张拉整体机器人——展示了形状变形(打包- unpacking)能力,并通过内部质量转移实现移动。所呈现的带质量的球形圆锥体的静态平衡分析是这些弯曲连杆机器人动态移动控制方向上的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b501/7805920/0df192bd750b/frobt-06-00111-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验