Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia.
Molecules. 2021 May 18;26(10):3003. doi: 10.3390/molecules26103003.
COVID-19 represents a new potentially life-threatening illness caused by severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 pathogen. In 2021, new variants of the virus with multiple key mutations have emerged, such as B.1.1.7, B.1.351, P.1 and B.1.617, and are threatening to render available vaccines or potential drugs ineffective. In this regard, we highlight 3CL, the main viral protease, as a valuable therapeutic target that possesses no mutations in the described pandemically relevant variants. 3CL could therefore provide trans-variant effectiveness that is supported by structural studies and possesses readily available biological evaluation experiments. With this in mind, we performed a high throughput virtual screening experiment using CmDock and the "" chemical library to prepare prioritisation lists of compounds for further studies. We coupled the virtual screening experiment to a machine learning-supported classification and activity regression study to bring maximal enrichment and available structural data on known 3CL inhibitors to the prepared focused libraries. All virtual screening hits are classified according to 3CL inhibitor, viral cysteine protease or remaining chemical space based on the calculated set of 208 chemical descriptors. Last but not least, we analysed if the current set of 3CL inhibitors could be used in activity prediction and observed that the field of 3CL inhibitors is drastically under-represented compared to the chemical space of viral cysteine protease inhibitors. We postulate that this methodology of 3CL inhibitor library preparation and compound prioritisation far surpass the selection of compounds from available commercial "corona focused libraries".
COVID-19 代表一种由严重急性呼吸系统综合征冠状病毒 2 或 SARS-CoV-2 病原体引起的新的潜在危及生命的疾病。2021 年,出现了具有多个关键突变的病毒新变体,如 B.1.1.7、B.1.351、P.1 和 B.1.617,并有可能使现有疫苗或潜在药物失效。在这方面,我们强调 3CL,即主要的病毒蛋白酶,作为一个有价值的治疗靶点,在描述的大流行相关变体中没有突变。3CL 因此可以提供跨变体的有效性,这得到了结构研究的支持,并具有现成的生物学评估实验。考虑到这一点,我们使用 CmDock 和“化学库”进行了高通量虚拟筛选实验,为进一步的研究准备化合物的优先列表。我们将虚拟筛选实验与机器学习支持的分类和活性回归研究相结合,将已知 3CL 抑制剂的最大富集和可用结构数据引入到准备好的重点库中。所有虚拟筛选命中物都根据计算的 208 个化学描述符集,按照 3CL 抑制剂、病毒半胱氨酸蛋白酶或剩余化学空间进行分类。最后但同样重要的是,我们分析了当前的 3CL 抑制剂集是否可用于活性预测,并观察到与病毒半胱氨酸蛋白酶抑制剂的化学空间相比,3CL 抑制剂领域的代表性严重不足。我们假设这种 3CL 抑制剂库制备和化合物优先级排序的方法远远超过了从现有商业“冠状病毒重点库”中选择化合物的方法。