Suppr超能文献

近红外反射光谱分析用于预测一种山地有蹄类动物的饮食组成。

Near Infrared Reflectance Spectroscopy Analysis to Predict Diet Composition of a Mountain Ungulate Species.

作者信息

Jarque-Bascuñana Laia, Bartolomé Jordi, Serrano Emmanuel, Espunyes Johan, Garel Mathieu, Calleja Alarcón Juan Antonio, López-Olvera Jorge Ramón, Albanell Elena

机构信息

Wildlife Ecology & Health Group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.

Ruminant Research Group, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.

出版信息

Animals (Basel). 2021 May 18;11(5):1449. doi: 10.3390/ani11051449.

Abstract

The diet composition of ungulates is important to understand not only their impact on vegetation, but also to understand the consequences of natural and human-driven environmental changes on the foraging behavior of these mammals. In this work, we evaluated the use of near infrared reflectance spectroscopy analysis (NIRS), a quick, economic and non-destructive method, to assess the diet composition of the Pyrenean chamois . Fecal samples ( = 192) were collected from two chamois populations in the French and Spanish Pyrenees. Diet composition was initially assessed by fecal cuticle microhistological analysis (CMA) and categorized into four functional groups, namely: woody, herbaceous, graminoid and Fabaceae plants. Regressions of modified partial least squares and several combinations of scattering correction and derivative treatments were tested. The results showed that models based on the second derivative processing obtained the higher determination coefficient for woody, herbaceous and graminoid plants (R, coefficient of determination in calibration, ranged from 0.86 to 0.91). The Fabaceae group, however, was predicted with lower accuracy (R = 0.71). Even though an agreement between NIRS and CMA methods was confirmed by a Bland-Altman analysis, confidence limits of agreement differed by up to 25%. Our results support the viability of fecal NIRS analysis to study spatial and temporal variations of the Pyrenean chamois' diets in summer and winter when differences in the consumption of woody and annual plants are the greatest. This new use for the NIRS technique would be useful to assess the consequences of global change on the feeding behavior of this mountain ungulate and also in other ungulate counterparts.

摘要

有蹄类动物的饮食组成不仅对于理解它们对植被的影响很重要,而且对于理解自然和人为驱动的环境变化对这些哺乳动物觅食行为的影响也很重要。在这项研究中,我们评估了使用近红外反射光谱分析(NIRS)这种快速、经济且无损的方法来评估比利牛斯臆羚的饮食组成。从法国和西班牙比利牛斯山脉的两个臆羚种群中收集了粪便样本((n = 192))。饮食组成最初通过粪便角质层显微组织学分析(CMA)进行评估,并分为四个功能组,即:木本植物、草本植物、禾本科植物和豆科植物。测试了修正偏最小二乘法的回归以及散射校正和导数处理的几种组合。结果表明,基于二阶导数处理的模型在木本植物、草本植物和禾本科植物方面获得了更高的决定系数((R),校准中的决定系数,范围为(0.86)至(0.91))。然而,豆科植物组的预测准确性较低((R = 0.71))。尽管通过布兰德 - 奥特曼分析证实了NIRS和CMA方法之间的一致性,但一致性的置信限相差高达(25%)。我们的结果支持粪便NIRS分析在研究比利牛斯臆羚夏季和冬季饮食的空间和时间变化方面的可行性,此时木本植物和一年生植物的消耗量差异最大。NIRS技术的这种新用途将有助于评估全球变化对这种山地有蹄类动物以及其他有蹄类动物觅食行为的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64c5/8158497/00803dd20499/animals-11-01449-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验