文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Protein Engineering of Electron Transfer Components from Electroactive Bacteria.

作者信息

Fernandes Tomás M, Morgado Leonor, Turner David L, Salgueiro Carlos A

机构信息

UCIBIO, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal.

Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.

出版信息

Antioxidants (Basel). 2021 May 25;10(6):844. doi: 10.3390/antiox10060844.


DOI:10.3390/antiox10060844
PMID:34070486
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8227773/
Abstract

Electrogenic microorganisms possess unique redox biological features, being capable of transferring electrons to the cell exterior and converting highly toxic compounds into nonhazardous forms. These microorganisms have led to the development of Microbial Electrochemical Technologies (METs), which include applications in the fields of bioremediation and bioenergy production. The optimization of these technologies involves efforts from several different disciplines, ranging from microbiology to materials science. bacteria have served as a model for understanding the mechanisms underlying the phenomenon of extracellular electron transfer, which is highly dependent on a multitude of multiheme cytochromes (MCs). MCs are, therefore, logical targets for rational protein engineering to improve the extracellular electron transfer rates of these bacteria. However, the presence of several heme groups complicates the detailed redox characterization of MCs. In this Review, the main characteristics of electroactive bacteria, their potential to develop microbial electrochemical technologies and the main features of MCs are initially highlighted. This is followed by a detailed description of the current methodologies that assist the characterization of the functional redox networks in MCs. Finally, it is discussed how this information can be explored to design optimal -mutated strains with improved capabilities in METs.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/4ba5fcf1f3a7/antioxidants-10-00844-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/ff5d511d924c/antioxidants-10-00844-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/a5f5a507f8f9/antioxidants-10-00844-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/5117f57338b6/antioxidants-10-00844-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/15ce11862e67/antioxidants-10-00844-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/b7619227788f/antioxidants-10-00844-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/194468e50ea0/antioxidants-10-00844-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/d84cf61352ea/antioxidants-10-00844-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/08b585d7cf67/antioxidants-10-00844-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/f90cfde2ff58/antioxidants-10-00844-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/2dc447fccc8a/antioxidants-10-00844-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/80d48e7c7e60/antioxidants-10-00844-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/696b13881af4/antioxidants-10-00844-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/d1dbffde8efa/antioxidants-10-00844-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/4ba5fcf1f3a7/antioxidants-10-00844-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/ff5d511d924c/antioxidants-10-00844-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/a5f5a507f8f9/antioxidants-10-00844-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/5117f57338b6/antioxidants-10-00844-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/15ce11862e67/antioxidants-10-00844-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/b7619227788f/antioxidants-10-00844-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/194468e50ea0/antioxidants-10-00844-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/d84cf61352ea/antioxidants-10-00844-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/08b585d7cf67/antioxidants-10-00844-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/f90cfde2ff58/antioxidants-10-00844-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/2dc447fccc8a/antioxidants-10-00844-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/80d48e7c7e60/antioxidants-10-00844-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/696b13881af4/antioxidants-10-00844-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/d1dbffde8efa/antioxidants-10-00844-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e559/8227773/4ba5fcf1f3a7/antioxidants-10-00844-g014.jpg

相似文献

[1]
Protein Engineering of Electron Transfer Components from Electroactive Bacteria.

Antioxidants (Basel). 2021-5-25

[2]
Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies.

Front Microbiol. 2015-7-30

[3]
Electron Flow From the Inner Membrane Towards the Cell Exterior in : Biochemical Characterization of Cytochrome CbcL.

Front Microbiol. 2022-5-10

[4]
A unique aromatic residue modulates the redox range of a periplasmic multiheme cytochrome from Geobacter metallireducens.

J Biol Chem. 2021

[5]
Rational design of electron/proton transfer mechanisms in the exoelectrogenic bacteria Geobacter sulfurreducens.

Biochem J. 2021-7-30

[6]
Thermodynamic and functional characterization of the periplasmic triheme cytochrome PpcA from .

Biochem J. 2018-9-14

[7]
Molecular geometries of the heme axial ligands from the triheme cytochrome PpcF from Geobacter metallireducens reveal a conserved heme core architecture.

Arch Biochem Biophys. 2022-7-15

[8]
Backbone, side chain and heme resonance assignment of the triheme cytochrome PpcA from Geobacter metallireducens in the oxidized state.

Biomol NMR Assign. 2020-4

[9]
Elucidation of complex respiratory chains: a straightforward strategy to monitor electron transfer between cytochromes.

Metallomics. 2022-4-18

[10]
Backbone, side chain and heme resonance assignments of the triheme cytochrome PpcD from Geobacter sulfurreducens.

Biomol NMR Assign. 2015-4

引用本文的文献

[1]
Widespread extracellular electron transfer pathways for charging microbial cytochrome OmcS nanowires via periplasmic cytochromes PpcABCDE.

Nat Commun. 2024-3-20

[2]
A Biochemical Deconstruction-Based Strategy to Assist the Characterization of Bacterial Electric Conductive Filaments.

Int J Mol Sci. 2023-4-11

[3]
Structural and functional insights of GSU0105, a unique multiheme cytochrome from G. sulfurreducens.

Biophys J. 2021-12-7

本文引用的文献

[1]
Microbial electrochemistry for bioremediation.

Environ Sci Ecotechnol. 2020-1-11

[2]
Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms.

Biotechnol Adv. 2021-12

[3]
Comparative proteomics of Geobacter sulfurreducens PCA in response to acetate, formate and/or hydrogen as electron donor.

Environ Microbiol. 2021-1

[4]
Global transcriptional analysis of Geobacter sulfurreducens under palladium reducing conditions reveals new key cytochromes involved.

Appl Microbiol Biotechnol. 2020-5

[5]
Structural and Functional Relevance of the Conserved Residue V13 in the Triheme Cytochrome PpcA from Geobacter sulfurreducens.

J Phys Chem B. 2019-4-2

[6]
Electroactive microorganisms in bioelectrochemical systems.

Nat Rev Microbiol. 2019-5

[7]
Architectural adaptations of microbial fuel cells.

Appl Microbiol Biotechnol. 2018-9-26

[8]
Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials.

J Phys Chem B. 2018-10-14

[9]
Thermodynamic and functional characterization of the periplasmic triheme cytochrome PpcA from .

Biochem J. 2018-9-14

[10]
Identification of Different Putative Outer Membrane Electron Conduits Necessary for Fe(III) Citrate, Fe(III) Oxide, Mn(IV) Oxide, or Electrode Reduction by Geobacter sulfurreducens.

J Bacteriol. 2018-9-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索