Suppr超能文献

一种局部既为尖峰态又为厚尾分布及其在贝叶斯随机波动率模型中的应用。

A Locally Both Leptokurtic and Fat-Tailed Distribution with Application in a Bayesian Stochastic Volatility Model.

作者信息

Lenart Łukasz, Pajor Anna, Kwiatkowski Łukasz

机构信息

Department of Mathematics, Cracow University of Economics, ul. Rakowicka 27, 31-510 Kraków, Poland.

Department of Financial Mathematics, Jagiellonian University in Kraków, ul. Prof. Stanisława ojasiewicza 6, 30-348 Kraków, Poland.

出版信息

Entropy (Basel). 2021 May 30;23(6):689. doi: 10.3390/e23060689.

Abstract

In the paper, we begin with introducing a novel scale mixture of normal distribution such that its leptokurticity and fat-tailedness are only local, with this "locality" being separately controlled by two censoring parameters. This new, locally leptokurtic and fat-tailed (LLFT) distribution makes a viable alternative for other, globally leptokurtic, fat-tailed and symmetric distributions, typically entertained in financial volatility modelling. Then, we incorporate the LLFT distribution into a basic stochastic volatility (SV) model to yield a flexible alternative for common heavy-tailed SV models. For the resulting LLFT-SV model, we develop a Bayesian statistical framework and effective MCMC methods to enable posterior sampling of the parameters and latent variables. Empirical results indicate the validity of the LLFT-SV specification for modelling both "non-standard" financial time series with repeating zero returns, as well as more "typical" data on the S&P 500 and DAX indices. For the former, the LLFT-SV model is also shown to markedly outperform a common, globally heavy-tailed, t-SV alternative in terms of density forecasting. Applications of the proposed distribution in more advanced SV models seem to be easily attainable.

摘要

在本文中,我们首先引入一种新的正态分布尺度混合,使得其峰度和厚尾性仅为局部特征,这种“局部性”由两个删失参数分别控制。这种新的局部峰度和厚尾(LLFT)分布为金融波动率建模中通常考虑的其他全局峰度、厚尾和对称分布提供了一种可行的替代方案。然后,我们将LLFT分布纳入基本的随机波动率(SV)模型,为常见的重尾SV模型提供一种灵活的替代方案。对于由此产生的LLFT - SV模型,我们开发了一个贝叶斯统计框架和有效的马尔可夫链蒙特卡罗(MCMC)方法,以实现对参数和潜在变量的后验抽样。实证结果表明,LLFT - SV规范对于模拟具有重复零回报的“非标准”金融时间序列以及标准普尔500指数和德国DAX指数等更“典型”的数据是有效的。对于前者,在密度预测方面,LLFT - SV模型也明显优于常见的全局重尾t - SV替代模型。所提出的分布在更高级的SV模型中的应用似乎很容易实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ac/8227642/e9295bbc8efd/entropy-23-00689-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验