Lenart Łukasz, Pajor Anna, Kwiatkowski Łukasz
Department of Mathematics, Cracow University of Economics, ul. Rakowicka 27, 31-510 Kraków, Poland.
Department of Financial Mathematics, Jagiellonian University in Kraków, ul. Prof. Stanisława ojasiewicza 6, 30-348 Kraków, Poland.
Entropy (Basel). 2021 May 30;23(6):689. doi: 10.3390/e23060689.
In the paper, we begin with introducing a novel scale mixture of normal distribution such that its leptokurticity and fat-tailedness are only local, with this "locality" being separately controlled by two censoring parameters. This new, locally leptokurtic and fat-tailed (LLFT) distribution makes a viable alternative for other, globally leptokurtic, fat-tailed and symmetric distributions, typically entertained in financial volatility modelling. Then, we incorporate the LLFT distribution into a basic stochastic volatility (SV) model to yield a flexible alternative for common heavy-tailed SV models. For the resulting LLFT-SV model, we develop a Bayesian statistical framework and effective MCMC methods to enable posterior sampling of the parameters and latent variables. Empirical results indicate the validity of the LLFT-SV specification for modelling both "non-standard" financial time series with repeating zero returns, as well as more "typical" data on the S&P 500 and DAX indices. For the former, the LLFT-SV model is also shown to markedly outperform a common, globally heavy-tailed, t-SV alternative in terms of density forecasting. Applications of the proposed distribution in more advanced SV models seem to be easily attainable.
在本文中,我们首先引入一种新的正态分布尺度混合,使得其峰度和厚尾性仅为局部特征,这种“局部性”由两个删失参数分别控制。这种新的局部峰度和厚尾(LLFT)分布为金融波动率建模中通常考虑的其他全局峰度、厚尾和对称分布提供了一种可行的替代方案。然后,我们将LLFT分布纳入基本的随机波动率(SV)模型,为常见的重尾SV模型提供一种灵活的替代方案。对于由此产生的LLFT - SV模型,我们开发了一个贝叶斯统计框架和有效的马尔可夫链蒙特卡罗(MCMC)方法,以实现对参数和潜在变量的后验抽样。实证结果表明,LLFT - SV规范对于模拟具有重复零回报的“非标准”金融时间序列以及标准普尔500指数和德国DAX指数等更“典型”的数据是有效的。对于前者,在密度预测方面,LLFT - SV模型也明显优于常见的全局重尾t - SV替代模型。所提出的分布在更高级的SV模型中的应用似乎很容易实现。