Suppr超能文献

聚焦于先天性心脏病遗传结构定义的策略。

Focused Strategies for Defining the Genetic Architecture of Congenital Heart Defects.

机构信息

Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.

Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA.

出版信息

Genes (Basel). 2021 May 28;12(6):827. doi: 10.3390/genes12060827.

Abstract

Congenital heart defects (CHD) are malformations present at birth that occur during heart development. Increasing evidence supports a genetic origin of CHD, but in the process important challenges have been identified. This review begins with information about CHD and the importance of detailed phenotyping of study subjects. To facilitate appropriate genetic study design, we review DNA structure, genetic variation in the human genome and tools to identify the genetic variation of interest. Analytic approaches powered for both common and rare variants are assessed. While the ideal outcome of genetic studies is to identify variants that have a causal role, a more realistic goal for genetic analytics is to identify variants in specific genes that influence the occurrence of a phenotype and which provide keys to open biologic doors that inform how the genetic variants modulate heart development. It has never been truer that good genetic studies start with good planning. Continued progress in unraveling the genetic underpinnings of CHD will require multidisciplinary collaboration between geneticists, quantitative scientists, clinicians, and developmental biologists.

摘要

先天性心脏缺陷(CHD)是出生时存在的畸形,发生在心脏发育过程中。越来越多的证据支持 CHD 的遗传起源,但在这个过程中也确定了一些重要的挑战。这篇综述首先介绍了 CHD 的信息以及对研究对象进行详细表型分析的重要性。为了便于进行适当的遗传研究设计,我们回顾了 DNA 结构、人类基因组中的遗传变异以及识别感兴趣的遗传变异的工具。评估了针对常见和罕见变异的分析方法。虽然遗传研究的理想结果是确定具有因果作用的变异,但遗传分析更现实的目标是确定特定基因中的变异,这些变异影响表型的发生,并提供开启生物学大门的关键,从而了解遗传变异如何调节心脏发育。遗传研究开始之前就进行良好的规划,这一事实从未如此真实。要解开 CHD 的遗传基础,就需要遗传学家、定量科学家、临床医生和发育生物学家之间进行多学科合作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/947c/8228798/1a362b0c52d9/genes-12-00827-g001.jpg

相似文献

1
Focused Strategies for Defining the Genetic Architecture of Congenital Heart Defects.
Genes (Basel). 2021 May 28;12(6):827. doi: 10.3390/genes12060827.
3
Utilization of Whole Exome Sequencing to Identify Causative Mutations in Familial Congenital Heart Disease.
Circ Cardiovasc Genet. 2016 Aug;9(4):320-9. doi: 10.1161/CIRCGENETICS.115.001324. Epub 2016 Jul 14.
4
Genetic mechanisms controlling cardiovascular development.
Ann N Y Acad Sci. 2008 Mar;1123:10-9. doi: 10.1196/annals.1420.003.
5
Identification of GATA6 sequence variants in patients with congenital heart defects.
Pediatr Res. 2010 Oct;68(4):281-5. doi: 10.1203/PDR.0b013e3181ed17e4.
7
Association of functional variant in GDF1 promoter with risk of congenital heart disease and its regulation by Nkx2.5.
Clin Sci (Lond). 2019 Jun 17;133(12):1281-1295. doi: 10.1042/CS20181024. Print 2019 Jun 28.
8
Statistical models of the genetic etiology of congenital heart disease.
Curr Opin Genet Dev. 2022 Oct;76:101967. doi: 10.1016/j.gde.2022.101967. Epub 2022 Aug 5.
9
Targeted next-generation sequencing identifies pathogenic variants in familial congenital heart disease.
J Am Coll Cardiol. 2014 Dec 16;64(23):2498-506. doi: 10.1016/j.jacc.2014.09.048.
10
Targeted Next-Generation Sequencing of 406 Genes Identified Genetic Defects Underlying Congenital Heart Disease in Down Syndrome Patients.
Pediatr Cardiol. 2018 Dec;39(8):1676-1680. doi: 10.1007/s00246-018-1951-3. Epub 2018 Aug 13.

引用本文的文献

1
Discovery of as a new gene underpinning congenital heart defects.
Am J Transl Res. 2024 Jan 15;16(1):109-125. doi: 10.62347/IVRF4475. eCollection 2024.
2
Somatic mutation contributes to tetralogy of Fallot.
Exp Ther Med. 2024 Jan 8;27(2):91. doi: 10.3892/etm.2024.12379. eCollection 2024 Feb.
3
Gender differences in congenital heart defects: a narrative review.
Transl Pediatr. 2023 Sep 18;12(9):1753-1764. doi: 10.21037/tp-23-260. Epub 2023 Sep 11.
4
Discovery of (Cx45) as a New Gene Underlying Congenital Heart Disease and Arrhythmias.
Biology (Basel). 2023 Feb 21;12(3):346. doi: 10.3390/biology12030346.
5
Identification of as a New Gene Predisposing to Congenital Heart Disease.
Diagnostics (Basel). 2022 Aug 8;12(8):1917. doi: 10.3390/diagnostics12081917.
6
SOX7 loss-of-function variation as a cause of familial congenital heart disease.
Am J Transl Res. 2022 Mar 15;14(3):1672-1684. eCollection 2022.
8
SMAD1 Loss-of-Function Variant Responsible for Congenital Heart Disease.
Biomed Res Int. 2022 Mar 3;2022:9916325. doi: 10.1155/2022/9916325. eCollection 2022.

本文引用的文献

2
Will polygenic risk scores for cancer ever be clinically useful?
NPJ Precis Oncol. 2021 May 21;5(1):40. doi: 10.1038/s41698-021-00176-1.
3
Polygenic risk scores in the clinic: new perspectives needed on familiar ethical issues.
Genome Med. 2021 Jan 28;13(1):14. doi: 10.1186/s13073-021-00829-7.
5
Fully phased human genome assembly without parental data using single-cell strand sequencing and long reads.
Nat Biotechnol. 2021 Mar;39(3):302-308. doi: 10.1038/s41587-020-0719-5. Epub 2020 Dec 7.
6
Next Generation Sequencing and Bioinformatics Analysis of Family Genetic Inheritance.
Front Genet. 2020 Oct 23;11:544162. doi: 10.3389/fgene.2020.544162. eCollection 2020.
7
Cardiovascular Problems in the Fragile X Premutation.
Front Genet. 2020 Oct 8;11:586910. doi: 10.3389/fgene.2020.586910. eCollection 2020.
9
A comparative study of single nucleotide variant detection performance using three massively parallel sequencing methods.
PLoS One. 2020 Sep 28;15(9):e0239850. doi: 10.1371/journal.pone.0239850. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验