Le Thao Duc, Gathignol Floran, Vu Huong Thi, Nguyen Khanh Le, Tran Linh Hien, Vu Hien Thi Thu, Dinh Tu Xuan, Lazennec Françoise, Pham Xuan Hoi, Véry Anne-Aliénor, Gantet Pascal, Hoang Giang Thi
National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, LMI RICE-2, Hanoi 00000, Vietnam.
UMR DIADE, Université de Montpellier, IRD, 34095 Montpellier, France.
Plants (Basel). 2021 May 28;10(6):1088. doi: 10.3390/plants10061088.
Rice tolerance to salinity stress involves diverse and complementary mechanisms, such as the regulation of genome expression, activation of specific ion-transport systems to manage excess sodium at the cell or plant level, and anatomical changes that avoid sodium penetration into the inner tissues of the plant. These complementary mechanisms can act synergistically to improve salinity tolerance in the plant, which is then interesting in breeding programs to pyramidize complementary QTLs (quantitative trait loci), to improve salinity stress tolerance of the plant at different developmental stages and in different environments. This approach presupposes the identification of salinity tolerance QTLs associated with different mechanisms involved in salinity tolerance, which requires the greatest possible genetic diversity to be explored. To contribute to this goal, we screened an original panel of 179 Vietnamese rice landraces genotyped with 21,623 SNP markers for salinity stress tolerance under 100 mM NaCl treatment, at the seedling stage, with the aim of identifying new QTLs involved in the salinity stress tolerance via a genome-wide association study (GWAS). Nine salinity tolerance-related traits, including the salt injury score, chlorophyll and water content, and K and Na contents were measured in leaves. GWAS analysis allowed the identification of 26 QTLs. Interestingly, ten of them were associated with several different traits, which indicates that these QTLs act pleiotropically to control the different levels of plant responses to salinity stress. Twenty-one identified QTLs colocalized with known QTLs. Several genes within these QTLs have functions related to salinity stress tolerance and are mainly involved in gene regulation, signal transduction or hormone signaling. Our study provides promising QTLs for breeding programs to enhance salinity tolerance and identifies candidate genes that should be further functionally studied to better understand salinity tolerance mechanisms in rice.
水稻对盐胁迫的耐受性涉及多种互补机制,例如基因组表达调控、激活特定离子转运系统以在细胞或植物水平上管理过量的钠,以及避免钠渗透到植物内部组织的解剖学变化。这些互补机制可以协同作用,提高植物的耐盐性,这对于在育种计划中聚合互补的数量性状基因座(QTL)很有意义,从而在不同发育阶段和不同环境中提高植物的盐胁迫耐受性。这种方法的前提是鉴定与耐盐性相关的不同机制相关的耐盐QTL,这需要探索尽可能大的遗传多样性。为了实现这一目标,我们筛选了一个由179个越南水稻地方品种组成的原始群体,这些品种用21,623个单核苷酸多态性(SNP)标记进行了基因分型,在苗期100 mM NaCl处理下进行盐胁迫耐受性研究,目的是通过全基因组关联研究(GWAS)鉴定参与盐胁迫耐受性的新QTL。在叶片中测量了九个与耐盐性相关的性状,包括盐害评分、叶绿素和水分含量以及钾和钠含量。GWAS分析鉴定出26个QTL。有趣的是,其中十个与几种不同的性状相关,这表明这些QTL具有多效性,可控制植物对盐胁迫的不同反应水平。二十一个鉴定出的QTL与已知QTL共定位。这些QTL中的几个基因具有与盐胁迫耐受性相关的功能,主要参与基因调控、信号转导或激素信号传导。我们的研究为育种计划提供了有前景的QTL,以增强耐盐性,并鉴定出应进一步进行功能研究的候选基因,以更好地理解水稻的耐盐机制。