Suppr超能文献

可变自旋系统的半经典离散化与长时间演化

Semi-Classical Discretization and Long-Time Evolution of Variable Spin Systems.

作者信息

Morales-Hernández Giovani E, Castellanos Juan C, Romero José L, Klimov Andrei B

机构信息

Departamento de Física, Universidad de Guadalajara, Guadalajara 44420, Jalisco, Mexico.

出版信息

Entropy (Basel). 2021 May 28;23(6):684. doi: 10.3390/e23060684.

Abstract

We apply the semi-classical limit of the generalized SO(3) map for representation of variable-spin systems in a four-dimensional symplectic manifold and approximate their evolution terms of effective classical dynamics on T*S2. Using the asymptotic form of the star-product, we manage to "quantize" one of the classical dynamic variables and introduce a discretized version of the Truncated Wigner Approximation (TWA). Two emblematic examples of quantum dynamics (rotor in an external field and two coupled spins) are analyzed, and the results of exact, continuous, and discretized versions of TWA are compared.

摘要

我们应用广义SO(3)映射的半经典极限来表示四维辛流形中的变自旋系统,并在T*S2上近似其有效经典动力学的演化项。利用星积的渐近形式,我们成功地“量子化”了一个经典动力学变量,并引入了截断维格纳近似(TWA)的离散版本。分析了两个量子动力学的典型例子(外场中的转子和两个耦合自旋),并比较了TWA的精确、连续和离散版本的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd4d/8229760/c2881fb644d6/entropy-23-00684-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验