Morales-Hernández Giovani E, Castellanos Juan C, Romero José L, Klimov Andrei B
Departamento de Física, Universidad de Guadalajara, Guadalajara 44420, Jalisco, Mexico.
Entropy (Basel). 2021 May 28;23(6):684. doi: 10.3390/e23060684.
We apply the semi-classical limit of the generalized SO(3) map for representation of variable-spin systems in a four-dimensional symplectic manifold and approximate their evolution terms of effective classical dynamics on T*S2. Using the asymptotic form of the star-product, we manage to "quantize" one of the classical dynamic variables and introduce a discretized version of the Truncated Wigner Approximation (TWA). Two emblematic examples of quantum dynamics (rotor in an external field and two coupled spins) are analyzed, and the results of exact, continuous, and discretized versions of TWA are compared.
我们应用广义SO(3)映射的半经典极限来表示四维辛流形中的变自旋系统,并在T*S2上近似其有效经典动力学的演化项。利用星积的渐近形式,我们成功地“量子化”了一个经典动力学变量,并引入了截断维格纳近似(TWA)的离散版本。分析了两个量子动力学的典型例子(外场中的转子和两个耦合自旋),并比较了TWA的精确、连续和离散版本的结果。