Suppr超能文献

多机构实施用于高血压管理中基因分型的临床决策支持。

Multi-Institutional Implementation of Clinical Decision Support for and Genotyping in Antihypertensive Management.

作者信息

Schneider Thomas M, Eadon Michael T, Cooper-DeHoff Rhonda M, Cavanaugh Kerri L, Nguyen Khoa A, Arwood Meghan J, Tillman Emma M, Pratt Victoria M, Dexter Paul R, McCoy Allison B, Orlando Lori A, Scott Stuart A, Nadkarni Girish N, Horowitz Carol R, Kannry Joseph L

机构信息

Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

出版信息

J Pers Med. 2021 May 27;11(6):480. doi: 10.3390/jpm11060480.

Abstract

(1) Background: Clinical decision support (CDS) is a vitally important adjunct to the implementation of pharmacogenomic-guided prescribing in clinical practice. A novel CDS was sought for the , , and genes to guide optimal selection of antihypertensive medications among the African American population cared for at multiple participating institutions in a clinical trial. (2) Methods: The CDS committee, made up of clinical content and CDS experts, developed a framework and contributed to the creation of the CDS using the following guiding principles: 1. medical algorithm consensus; 2. actionability; 3. context-sensitive triggers; 4. workflow integration; 5. feasibility; 6. interpretability; 7. portability; and 8. discrete reporting of lab results. (3) Results: Utilizing the principle of discrete patient laboratory and vital information, a novel CDS for , , and was created for use in a multi-institutional trial based on a medical algorithm consensus. The alerts are actionable and easily interpretable, clearly displaying the purpose and recommendations with pertinent laboratory results, vitals and links to ordersets with suggested antihypertensive dosages. Alerts were either triggered immediately once a provider starts to order relevant antihypertensive agents or strategically placed in workflow-appropriate general CDS sections in the electronic health record (EHR). Detailed implementation instructions were shared across institutions to achieve maximum portability. (4) Conclusions: Using sound principles, the created genetic algorithms were applied across multiple institutions. The framework outlined in this study should apply to other disease-gene and pharmacogenomic projects employing CDS.

摘要

(1) 背景:临床决策支持(CDS)是临床实践中实施药物基因组学指导处方的至关重要的辅助手段。在一项临床试验中,为参与的多个机构所照顾的非裔美国人群体寻找一种新型CDS,用于[具体基因1]、[具体基因2]和[具体基因3]基因,以指导抗高血压药物的最佳选择。(2) 方法:由临床内容和CDS专家组成的CDS委员会制定了一个框架,并使用以下指导原则为CDS的创建做出贡献:1. 医学算法共识;2. 可操作性;3. 上下文敏感触发;4. 工作流程整合;5. 可行性;6. 可解释性;7. 可移植性;8. 实验室结果的离散报告。(3) 结果:利用离散的患者实验室和生命体征信息原则,基于医学算法共识创建了一种用于[具体基因1]、[具体基因2]和[具体基因3]的新型CDS,用于多机构试验。这些警报是可操作且易于解释的,清晰显示目的和建议以及相关的实验室结果、生命体征和指向带有建议抗高血压剂量的医嘱集的链接。一旦提供者开始订购相关抗高血压药物,警报会立即触发,或者战略性地放置在电子健康记录(EHR)中与工作流程相适应的一般CDS部分。详细的实施说明在各机构之间共享,以实现最大程度的可移植性。(4) 结论:运用合理的原则,所创建的遗传算法在多个机构中得到应用。本研究中概述的框架应适用于其他采用CDS的疾病 - 基因和药物基因组学项目。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8579/8226809/7d6d26659ad8/jpm-11-00480-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验