文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于监督机器学习方法和高光谱成像技术的脑癌分类。

Supervised Machine Learning Methods and Hyperspectral Imaging Techniques Jointly Applied for Brain Cancer Classification.

机构信息

Research Center on Software Technologies and Multimedia Systems (CITSEM), Universidad Politécnica de Madrid (UPM), Campus Sur UPM, 28031 Madrid, Spain.

Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.

出版信息

Sensors (Basel). 2021 May 31;21(11):3827. doi: 10.3390/s21113827.


DOI:10.3390/s21113827
PMID:34073145
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8199064/
Abstract

Hyperspectral imaging techniques (HSI) do not require contact with patients and are non-ionizing as well as non-invasive. As a consequence, they have been extensively applied in the medical field. HSI is being combined with machine learning (ML) processes to obtain models to assist in diagnosis. In particular, the combination of these techniques has proven to be a reliable aid in the differentiation of healthy and tumor tissue during brain tumor surgery. ML algorithms such as support vector machine (SVM), random forest (RF) and convolutional neural networks (CNN) are used to make predictions and provide in-vivo visualizations that may assist neurosurgeons in being more precise, hence reducing damages to healthy tissue. In this work, thirteen in-vivo hyperspectral images from twelve different patients with high-grade gliomas (grade III and IV) have been selected to train SVM, RF and CNN classifiers. Five different classes have been defined during the experiments: healthy tissue, tumor, venous blood vessel, arterial blood vessel and dura mater. Overall accuracy (OACC) results vary from 60% to 95% depending on the training conditions. Finally, as far as the contribution of each band to the OACC is concerned, the results obtained in this work are 3.81 times greater than those reported in the literature.

摘要

高光谱成像技术(HSI)不需要与患者接触,是非电离和非侵入性的。因此,它们已被广泛应用于医学领域。HSI 与机器学习(ML)过程相结合,以获得模型来辅助诊断。特别是,这些技术的结合已被证明是在脑肿瘤手术中区分健康组织和肿瘤组织的可靠辅助手段。支持向量机(SVM)、随机森林(RF)和卷积神经网络(CNN)等 ML 算法被用于进行预测并提供体内可视化,这可能有助于神经外科医生更加精确,从而减少对健康组织的损伤。在这项工作中,从 12 名患有高级别脑胶质瘤(III 级和 IV 级)的不同患者中选择了 13 张体内高光谱图像来训练 SVM、RF 和 CNN 分类器。在实验过程中定义了 5 个不同的类别:健康组织、肿瘤、静脉血管、动脉血管和硬脑膜。根据训练条件的不同,整体准确率(OACC)结果从 60%到 95%不等。最后,就每个波段对 OACC 的贡献而言,这项工作的结果比文献中的结果高出 3.81 倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/973dbb12aade/sensors-21-03827-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/16fcc63d473d/sensors-21-03827-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/218963583540/sensors-21-03827-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/60c59ce9976d/sensors-21-03827-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/8a5e6a03e3a4/sensors-21-03827-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/286146ef8405/sensors-21-03827-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/413153748b80/sensors-21-03827-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/28a1bf3dc51b/sensors-21-03827-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/dc606f4d6da3/sensors-21-03827-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/bac94dc193ff/sensors-21-03827-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/20ced2b86f13/sensors-21-03827-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/04ed8ec06815/sensors-21-03827-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/f221d9bfab8c/sensors-21-03827-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/f8150f379d3a/sensors-21-03827-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/bdaf35615e1f/sensors-21-03827-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/84f5079024c9/sensors-21-03827-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/1c05e4ea8a13/sensors-21-03827-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/8cf43f13c7ba/sensors-21-03827-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/14791fa649ee/sensors-21-03827-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/52cd907a8ff4/sensors-21-03827-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/973dbb12aade/sensors-21-03827-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/16fcc63d473d/sensors-21-03827-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/218963583540/sensors-21-03827-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/60c59ce9976d/sensors-21-03827-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/8a5e6a03e3a4/sensors-21-03827-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/286146ef8405/sensors-21-03827-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/413153748b80/sensors-21-03827-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/28a1bf3dc51b/sensors-21-03827-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/dc606f4d6da3/sensors-21-03827-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/bac94dc193ff/sensors-21-03827-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/20ced2b86f13/sensors-21-03827-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/04ed8ec06815/sensors-21-03827-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/f221d9bfab8c/sensors-21-03827-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/f8150f379d3a/sensors-21-03827-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/bdaf35615e1f/sensors-21-03827-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/84f5079024c9/sensors-21-03827-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/1c05e4ea8a13/sensors-21-03827-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/8cf43f13c7ba/sensors-21-03827-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/14791fa649ee/sensors-21-03827-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/52cd907a8ff4/sensors-21-03827-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d3/8199064/973dbb12aade/sensors-21-03827-g020.jpg

相似文献

[1]
Supervised Machine Learning Methods and Hyperspectral Imaging Techniques Jointly Applied for Brain Cancer Classification.

Sensors (Basel). 2021-5-31

[2]
Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks.

Sensors (Basel). 2020-11-21

[3]
Non-destructive detection and classification of textile fibres based on hyperspectral imaging and 1D-CNN.

Anal Chim Acta. 2022-9-1

[4]
Deep convolutional neural network based hyperspectral brain tissue classification.

J Xray Sci Technol. 2023

[5]
Acceleration of Hyperspectral Skin Cancer Image Classification through Parallel Machine-Learning Methods.

Sensors (Basel). 2024-2-21

[6]
Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images.

Comput Methods Programs Biomed. 2021-9

[7]
[Application and prospects of hyperspectral imaging and deep learning in traditional Chinese medicine in context of AI and industry 4.0].

Zhongguo Zhong Yao Za Zhi. 2020-11

[8]
Non-destructive detection of defective maize kernels using hyperspectral imaging and convolutional neural network with attention module.

Spectrochim Acta A Mol Biomol Spectrosc. 2024-5-15

[9]
Discrimination of Deoxynivalenol Levels of Barley Kernels Using Hyperspectral Imaging in Tandem with Optimized Convolutional Neural Network.

Sensors (Basel). 2023-2-28

[10]
Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks.

J Am Med Inform Assoc. 2020-1-1

引用本文的文献

[1]
SLIMBRAIN database: A multimodal image database of in vivo human brains for tumour detection.

Sci Data. 2025-5-21

[2]
Research on a Burn Severity Detection Method Based on Hyperspectral Imaging.

Sensors (Basel). 2025-2-21

[3]
Advances in Machine Learning Models for Healthcare Applications: A Precise and Patient-Centric Approach.

Curr Pharm Des. 2025

[4]
Precision Imaging for Early Detection of Esophageal Cancer.

Bioengineering (Basel). 2025-1-20

[5]
Deep learning-based hyperspectral image correction and unmixing for brain tumor surgery.

iScience. 2024-10-28

[6]
Prediction of the impact of tobacco waste hydrothermal products on compost microbial growth using hyperspectral imaging combined with machine learning.

Front Microbiol. 2024-11-5

[7]
Hyperspectral imaging in neurosurgery: a review of systems, computational methods, and clinical applications.

J Biomed Opt. 2025-2

[8]
Machine and Deep Learning in Hyperspectral Fluorescence-Guided Brain Tumor Surgery.

Adv Exp Med Biol. 2024

[9]
Spectral library and method for sparse unmixing of hyperspectral images in fluorescence guided resection of brain tumors.

Biomed Opt Express. 2024-7-2

[10]
Spectral analysis comparison of pushbroom and snapshot hyperspectral cameras for brain tissues and chromophore identification.

J Biomed Opt. 2024-9

本文引用的文献

[1]
Hyperspectral Imaging for Glioblastoma Surgery: Improving Tumor Identification Using a Deep Spectral-Spatial Approach.

Sensors (Basel). 2020-12-5

[2]
Deep Learning-Based Framework for Identification of Glioblastoma Tumor using Hyperspectral Images of Human Brain.

Sensors (Basel). 2019-2-22

[3]
Intraoperative magnetic resonance imaging for neurosurgery - An anaesthesiologist's challenge.

Indian J Anaesth. 2018-6

[4]
Spatio-spectral classification of hyperspectral images for brain cancer detection during surgical operations.

PLoS One. 2018-3-19

[5]
An Intraoperative Visualization System Using Hyperspectral Imaging to Aid in Brain Tumor Delineation.

Sensors (Basel). 2018-2-1

[6]
Applications of Ultrasound in the Resection of Brain Tumors.

J Neuroimaging. 2017-1

[7]
The role of 5-aminolevulinic acid in brain tumor surgery: a systematic review.

Neurosurg Rev. 2016-10

[8]
Clinical evaluation of a model-updated image-guidance approach to brain shift compensation: experience in 16 cases.

Int J Comput Assist Radiol Surg. 2016-8

[9]
Epidemiologic and molecular prognostic review of glioblastoma.

Cancer Epidemiol Biomarkers Prev. 2014-10

[10]
Medical hyperspectral imaging: a review.

J Biomed Opt. 2014-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索