Research Center on Software Technologies and Multimedia Systems (CITSEM), Universidad Politécnica de Madrid (UPM), Campus Sur UPM, 28031 Madrid, Spain.
Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
Sensors (Basel). 2021 May 31;21(11):3827. doi: 10.3390/s21113827.
Hyperspectral imaging techniques (HSI) do not require contact with patients and are non-ionizing as well as non-invasive. As a consequence, they have been extensively applied in the medical field. HSI is being combined with machine learning (ML) processes to obtain models to assist in diagnosis. In particular, the combination of these techniques has proven to be a reliable aid in the differentiation of healthy and tumor tissue during brain tumor surgery. ML algorithms such as support vector machine (SVM), random forest (RF) and convolutional neural networks (CNN) are used to make predictions and provide in-vivo visualizations that may assist neurosurgeons in being more precise, hence reducing damages to healthy tissue. In this work, thirteen in-vivo hyperspectral images from twelve different patients with high-grade gliomas (grade III and IV) have been selected to train SVM, RF and CNN classifiers. Five different classes have been defined during the experiments: healthy tissue, tumor, venous blood vessel, arterial blood vessel and dura mater. Overall accuracy (OACC) results vary from 60% to 95% depending on the training conditions. Finally, as far as the contribution of each band to the OACC is concerned, the results obtained in this work are 3.81 times greater than those reported in the literature.
高光谱成像技术(HSI)不需要与患者接触,是非电离和非侵入性的。因此,它们已被广泛应用于医学领域。HSI 与机器学习(ML)过程相结合,以获得模型来辅助诊断。特别是,这些技术的结合已被证明是在脑肿瘤手术中区分健康组织和肿瘤组织的可靠辅助手段。支持向量机(SVM)、随机森林(RF)和卷积神经网络(CNN)等 ML 算法被用于进行预测并提供体内可视化,这可能有助于神经外科医生更加精确,从而减少对健康组织的损伤。在这项工作中,从 12 名患有高级别脑胶质瘤(III 级和 IV 级)的不同患者中选择了 13 张体内高光谱图像来训练 SVM、RF 和 CNN 分类器。在实验过程中定义了 5 个不同的类别:健康组织、肿瘤、静脉血管、动脉血管和硬脑膜。根据训练条件的不同,整体准确率(OACC)结果从 60%到 95%不等。最后,就每个波段对 OACC 的贡献而言,这项工作的结果比文献中的结果高出 3.81 倍。
Sensors (Basel). 2020-11-21
J Xray Sci Technol. 2023
Comput Methods Programs Biomed. 2021-9
Spectrochim Acta A Mol Biomol Spectrosc. 2024-5-15
Sensors (Basel). 2025-2-21
Bioengineering (Basel). 2025-1-20
Adv Exp Med Biol. 2024
Indian J Anaesth. 2018-6
J Neuroimaging. 2017-1
Neurosurg Rev. 2016-10
Int J Comput Assist Radiol Surg. 2016-8
Cancer Epidemiol Biomarkers Prev. 2014-10
J Biomed Opt. 2014-1